Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(1; -3; -1) và B(-2; 1; 3).
LG a
Chứng tỏ rằng hai điểm A và B cách đều trục Ox.
Lời giải chi tiết:
Ta có Ox đi qua O(0, 0, 0) và có vectơ chỉ phương \(\overrightarrow i = \left( {1,0,0} \right).\)
\( \Rightarrow d\left( {A;Ox} \right) = {{\left| {\left[ {\overrightarrow {OA} ,\overrightarrow i } \right]} \right|} \over {\left| {\overrightarrow i } \right|}} = {{\sqrt {{0^2} + {{\left( { - 1} \right)}^2} + {{\left( { 3} \right)}^2}} } \over {\sqrt {{1^2} + {0^2} + {0^2}} }} = \sqrt {10} .\)
\(\eqalign{
& \Rightarrow d\left( {B;Ox} \right) = {{\left| {\left[ {\overrightarrow {OB} ,\overrightarrow i } \right]} \right|} \over {\left| {\overrightarrow i } \right|}} \cr&= {{\sqrt {{0^2} + {3^2} + {{\left( { - 1} \right)}^2}} } \over {\sqrt {{1^2} + {0^2} + {0^2}} }} = \sqrt {10} . \cr
& \Rightarrow d\left( {A;Ox} \right) = d\left( {B;Ox} \right). \cr} \)
Vậy A và B cách đều trục Ox.
LG b
Tìm điểm C nằm trên trục Oz sao cho tam giác ABC vuông tại C.
Lời giải chi tiết:
Điểm \(C \in Oz\) nên \(C\left( {0,0,c} \right)\).
Ta có: \(\overrightarrow {AC} = \left( { - 1,3,c + 1} \right),\overrightarrow {BC} = \left( {2, - 1,c - 3} \right).\)
Tam giác ABC vuông tại C nên
\(\eqalign{
& \overrightarrow {AC} \bot \overrightarrow {BC} \Rightarrow \overrightarrow {AC} .\overrightarrow {BC} = 0 \cr&\Leftrightarrow - 2 - 3 + \left( {c + 1} \right)\left( {c - 3} \right) = 0 \cr
& \Leftrightarrow - 5 + {c^2} - 2c - 3 = 0 \cr
& \Leftrightarrow {c^2} - 2c - 8 = 0 \cr
& \Leftrightarrow \left[ \matrix{
c = 4 \hfill \cr
c = - 2 \hfill \cr} \right.. \cr} \)
Vậy có 2 điểm C thỏa mãn đề bài là \(C\left( {0,0,4} \right)\) hoặc \(C\left( {0,0, - 2} \right).\)
LG c
Viết phương trình hình chiếu của đường thẳng AB trên mp(Oyz).
Lời giải chi tiết:
Hình chiếu của A trên mp(Oyz) là \(A'\left( {0, - 3, - 1} \right)\) và hình chiếu của B trên mp(Oyz) là \(B'\left( {0,1,3} \right)\).
\( \Rightarrow \overrightarrow {A'B'} = \left( {0,4,4} \right) = 4\left( {0,1,1} \right).\)
Suy ra hình chiếu d’ của AB trên mp(Oyz) là đường thẳng đi qua A’ và nhận \(\overrightarrow u = \left( {0,1,1} \right)\) và 1 vectơ chỉ phương.
Phương trình tham số của d’ là:
\(\left\{ \matrix{
x = 0 \hfill \cr
y = - 3 + t \hfill \cr
z = - 1 + t \hfill \cr} \right..\)
LG d
Viết phương trình mặt cầu đi qua ba điểm O, A, B và có tâm nằm trên mp(Oxy).
Lời giải chi tiết:
Gọi I là tâm của mặt cầu. Vì \(I \in \left( {Oxy} \right) \Rightarrow I\left( {a,b,0} \right).\)
Khi đó phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by + d = 0.\)
Vì O, A, B thuộc mặt cầu nên tọa độ của O, A, B thỏa mãn phương tình mặt cầu.
Từ đó ta có hệ phương trình:
\(\left\{ \matrix{
d = 0 \hfill \cr
1 + 9 + 1 - 2a + 6b + d = 0 \hfill \cr
4 + 1 + 9 + 4a - 2b + d = 0 \hfill \cr} \right. \)\(\Leftrightarrow \left\{ \matrix{
d = 0 \hfill \cr
- 2a + 6b = - 11 \hfill \cr
4a - 2b = - 14 \hfill \cr} \right.\)\( \Leftrightarrow \left\{ \matrix{
a = {{ - 53} \over {10}} \hfill \cr
b = - {{18} \over 5} \hfill \cr
d = 0 \hfill \cr} \right.\)
Vậy phương trình mặt cầu thỏa mãn đề bài là:
\({x^2} + {y^2} + {z^2} + {{53} \over 5}x + {{36} \over 5}y = 0\)
\(\Leftrightarrow 5{x^2} + 5{y^2} + 5{z^2} + 53x + 36y = 0.\)
Địa lí Việt Nam
Vấn đề sử dụng và bảo vệ tự nhiên
Bài 15. Bảo vệ môi trường và phòng chống thiên tai
Đề kiểm tra học kì 2
SOẠN VĂN 12 TẬP 1