ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 3 trang 141 SGK Đại số và giải tích 11

Đề bài

Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức \(A, H, N, O\) với:

\(\begin{array}{l}A = \lim \dfrac{{3n - 1}}{{n + 2}}\\H = \lim (\sqrt {{n^2} + 2n}  - n)\\N = \lim \dfrac{{\sqrt n  - 2}}{{3n + 7}}\\O = \lim \dfrac{{{3^n} - {{5.4}^n}}}{{1 - 4^n}}.\end{array}\)

Phương pháp giải - Xem chi tiết

A: Chia cả tử và mẫu cho \(n\).

H: Nhân liên hợp sau đó chia cả tử và mẫu cho \(n\).

N: Chia cả tử và mẫu cho \(n\).

O: Chia cả tử và mẫu cho \(4^n\).

Lời giải chi tiết

\(\begin{array}{l}A = \lim \dfrac{{3n - 1}}{{n + 2}} = \lim \dfrac{{n(3 - \dfrac{1}{n})}}{{n(1 + \dfrac{2}{n})}} \\= \lim \dfrac{{3 - \dfrac{1}{n}}}{{1 + \dfrac{2}{n}}}  = \dfrac{{3 - \lim \dfrac{1}{n}}}{{1 + \lim \dfrac{2}{n}}}= 3\\H = \lim (\sqrt {{n^2} + 2n}  - n) = \lim \dfrac{{({n^2} + 2n) - {n^2}}}{{\sqrt {{n^2} + 2n}  + n}}\\ = \lim \dfrac{{2n}}{{n\left[ {\sqrt {1 + \dfrac{2}{n}}  + 1} \right]}} = \lim \dfrac{2}{{\sqrt {1 + \dfrac{2}{n}}  + 1}} \\ =  \dfrac{2}{{\sqrt {1 + \lim \dfrac{2}{n}}  + 1}} = \dfrac{2}{{\sqrt {1 + 0}  + 1}}= 1\\N = \lim \dfrac{{\sqrt n  - 2}}{{3n + 7}} = \lim \dfrac{{n(\sqrt {\dfrac{1}{n}}  - \dfrac{2}{n})}}{{n(3 + \dfrac{7}{n})}}\\ = \lim \dfrac{{\sqrt {\dfrac{1}{n}}  - \dfrac{2}{n}}}{{3 + \dfrac{7}{n}}} = \dfrac{{\sqrt {\lim \dfrac{1}{n}}  - \lim \dfrac{2}{n}}}{{3 + \lim \dfrac{7}{n}}} \\= \dfrac{{0 - 0}}{{3 + 0}}= 0\\O = \lim \dfrac{{{3^n} - {{5.4}^n}}}{{1 - 4^n}} = \lim \dfrac{{{4^n}\left[ {{{(\dfrac{3}{4})}^n} - 5} \right]}}{{{4^n}\left[ {{{(\dfrac{1}{4})}^n} - 1} \right]}}\\ = \lim \dfrac{{{{(\dfrac{3}{4})}^n} - 5}}{{{{(\dfrac{1}{4})}^n} - 1}} = \dfrac{{\lim {{\left( {\dfrac{3}{4}} \right)}^n} - 5}}{{\lim {{\left( {\dfrac{1}{4}} \right)}^n} - 1}} \\= \dfrac{{0 - 5}}{{0 - 1}}= 5\end{array}\)

Vậy số \(1530\) là mã số của chữ \(HOAN\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved