Đề bài
Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức \(A, H, N, O\) với:
\(\begin{array}{l}A = \lim \dfrac{{3n - 1}}{{n + 2}}\\H = \lim (\sqrt {{n^2} + 2n} - n)\\N = \lim \dfrac{{\sqrt n - 2}}{{3n + 7}}\\O = \lim \dfrac{{{3^n} - {{5.4}^n}}}{{1 - 4^n}}.\end{array}\)
Phương pháp giải - Xem chi tiết
A: Chia cả tử và mẫu cho \(n\).
H: Nhân liên hợp sau đó chia cả tử và mẫu cho \(n\).
N: Chia cả tử và mẫu cho \(n\).
O: Chia cả tử và mẫu cho \(4^n\).
Lời giải chi tiết
\(\begin{array}{l}A = \lim \dfrac{{3n - 1}}{{n + 2}} = \lim \dfrac{{n(3 - \dfrac{1}{n})}}{{n(1 + \dfrac{2}{n})}} \\= \lim \dfrac{{3 - \dfrac{1}{n}}}{{1 + \dfrac{2}{n}}} = \dfrac{{3 - \lim \dfrac{1}{n}}}{{1 + \lim \dfrac{2}{n}}}= 3\\H = \lim (\sqrt {{n^2} + 2n} - n) = \lim \dfrac{{({n^2} + 2n) - {n^2}}}{{\sqrt {{n^2} + 2n} + n}}\\ = \lim \dfrac{{2n}}{{n\left[ {\sqrt {1 + \dfrac{2}{n}} + 1} \right]}} = \lim \dfrac{2}{{\sqrt {1 + \dfrac{2}{n}} + 1}} \\ = \dfrac{2}{{\sqrt {1 + \lim \dfrac{2}{n}} + 1}} = \dfrac{2}{{\sqrt {1 + 0} + 1}}= 1\\N = \lim \dfrac{{\sqrt n - 2}}{{3n + 7}} = \lim \dfrac{{n(\sqrt {\dfrac{1}{n}} - \dfrac{2}{n})}}{{n(3 + \dfrac{7}{n})}}\\ = \lim \dfrac{{\sqrt {\dfrac{1}{n}} - \dfrac{2}{n}}}{{3 + \dfrac{7}{n}}} = \dfrac{{\sqrt {\lim \dfrac{1}{n}} - \lim \dfrac{2}{n}}}{{3 + \lim \dfrac{7}{n}}} \\= \dfrac{{0 - 0}}{{3 + 0}}= 0\\O = \lim \dfrac{{{3^n} - {{5.4}^n}}}{{1 - 4^n}} = \lim \dfrac{{{4^n}\left[ {{{(\dfrac{3}{4})}^n} - 5} \right]}}{{{4^n}\left[ {{{(\dfrac{1}{4})}^n} - 1} \right]}}\\ = \lim \dfrac{{{{(\dfrac{3}{4})}^n} - 5}}{{{{(\dfrac{1}{4})}^n} - 1}} = \dfrac{{\lim {{\left( {\dfrac{3}{4}} \right)}^n} - 5}}{{\lim {{\left( {\dfrac{1}{4}} \right)}^n} - 1}} \\= \dfrac{{0 - 5}}{{0 - 1}}= 5\end{array}\)
Vậy số \(1530\) là mã số của chữ \(HOAN\).
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
Tác giả - Tác phẩm Ngữ văn 11 tập 2
Câu hỏi tự luyện Sinh 11
Chương 1: Cân bằng hóa học
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11