Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Chứng minh rằng nếu các cặp cạnh đối diện của tứ diện ABCD vuông góc với nhau từng đôi một thì trong bốn mặt của tứ diện có ít nhất một mặt là tam giác nhọn (cả ba góc của nó đều nhọn).
Lời giải chi tiết
Giả sử ABCD là tứ diện có tính chất \(AB \bot C{\rm{D}},AC \bot B{\rm{D}},A{\rm{D}} \bot BC\).
Ta có:
\(A{B^2} + C{{\rm{D}}^2} = A{C^2} + B{{\rm{D}}^2} = B{C^2} + A{{\rm{D}}^2}\).
Từ đó, ta có
\(\eqalign{ & A{B^2} + A{C^2} - B{C^2} \cr & = A{C^2} + A{{\rm{D}}^2} - C{{\rm{D}}^2} \cr & = A{{\rm{D}}^2} + A{B^2} - B{{\rm{D}}^2} \cr} \)
Hệ thức này khẳng định các góc \(\widehat {BAC},\widehat {CA{\rm{D}}},\widehat {DAB}\) hoặc cùng nhọn, cùng vuông hoặc cùng tù.
Tương tự như trên, ta chứng minh được góc tại bất cứ đỉnh nào của tứ diện ABCD cũng có tính chất đó. Do tính chất tổng các góc trong của một tam giác bằng 1800 nên tồn tại nhiều nhất một đỉnh của tứ diện mà tại đó ba góc cùng vuông hay cùng tù. Khi ấy mặt đối diện với đỉnh đó của tứ diện ABCD có cả ba góc đều nhọn.
Vậy nên \(AB \bot C{\rm{D}},AC \bot B{\rm{D}}\) và \(A{\rm{D}} \bot BC\) thì trong bốn mặt của tứ diện ABCD có ít nhất một mặt là tam giác nhọn (cả ba góc của nó nhỏ hơn 90°).
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Đề minh họa số 4
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Hóa học lớp 11
Giáo dục pháp luật
Unit 7: Education options for school-leavers
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11