Đề bài
Xét dãy số \(({u_n})\) xác định bởi \({u_1} = a\) và \({u_{n + 1}} = {{12} \over {{u_n}}}\) với mọi \(n \ge 1,\) trong đó a là một số thực khác 0.
Hãy xác định tất cả các giá trị của a để dãy số \(({u_n})\) là một cấp số nhân.
Lời giải chi tiết
Từ giả thiết \(a \ne 0\) dễ dàng suy ra \({u_n} \ne 0\) với mọi \(n \ge 1.\)
Từ hệ thức xác định dãy số \(({u_n})\) suy ra tất cả các số hạng của dãy số đó có cùng một loại dấu.
Giả sử \(({u_n})\) là một cấp số nhân. Khi đó, tồn tại một hằng số \(q > 0\) sao cho
\({u_{n + 1}} = {u_n}.q\) với mọi \(n \ge 1\) (1)
Từ (1) và hệ thức xác định dãy số \(({u_n})\) suy ra
\(u_n^2 = {{12} \over q}\) với mọi \(n \ge 1\) (2)
Xét hai trường hợp sau:
- Trường hợp 1: \(a > 0.\) Khi đó, ta có \({u_n} > 0\) với mọi \(n \ge 1.\) Vì thế, từ (2) ta được
\({u_n} = {{2\sqrt 3 } \over {\sqrt q }}\) với mọi \(n \ge 1.\)
Hay \(({u_n})\) là một dãy số không đổi. Do vậy, phải có \({u_2} = a\) hay \({{12} \over a} = a.\) Dẫn tới \(a = 2\sqrt 3 \)
- Trường hợp 2: \(a < 0.\) Khi đó, ta có \({u_n} < 0\) với mọi \(n \ge 1.\) Vì thế, từ (2) ta được
\({u_n} = - {{2\sqrt 3 } \over {\sqrt q }}\) với mọi \(n \ge 1.\)
Hay \(({u_n})\) là một dãy số không đổi. Do vậy, phải có \({u_2} = a\) hay \({{12} \over a} = a.\) Dẫn tới \(a = - 2\sqrt 3 \)
Ngược lại:
- Với \(a = 2\sqrt 3 \) dễ dàng chứng minh được \({u_n} = 2\sqrt 3 \) với mọi \(n \ge 1.\) Do đó, dãy số \(({u_n})\) là một cấp số nhân với công bộ \(q = 1\)
- Với \(a = - 2\sqrt 3 \) dễ dàng chứng minh được \({u_n} = - 2\sqrt 3 \) với mọi \(n \ge 1.\) Do đó, dãy số \(({u_n})\) là một cấp số nhân với công bộ \(q = 1\)
Tóm lại, tất cả các giá trị a cần tìm là \(a = 2\sqrt 3 \) và \(a = - 2\sqrt 3 \).
Review (Units 7 - 8)
Chủ đề 2. Quản lí bản thân
Đề cương ôn tập học kì 2
Chuyên đề 2. Chiến tranh và hòa bình trong thế kỉ XX
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11