Đề bài
Cho cấp số nhân \(({u_n})\) có \(3\sqrt 3 .{u_2} + {u_5} = 0\) và \(u_3^2 + u_6^2 = 63.\) Hãy tính tổng
\(S = \left| {{u_1}} \right| + \left| {{u_2}} \right| + \left| {{u_3}} \right| + ... + \left| {{u_{15}}} \right|.\)
Lời giải chi tiết
Kí hiệu q là công bội của cấp số nhân đã cho. Dễ thấy, \({u_1}.q \ne 0.\) Do đó, ta có
\(\left\{ \matrix{
3\sqrt 3 .{u_2} + {u_5} = 0 \hfill \cr
u_3^2 + u_6^2 = 63 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
{u_1}.q\left( {3\sqrt 3 + {q^3}} \right) = 0 \hfill \cr
u_1^2.{q^4}.\left( {1 + {q^6}} \right) = 63 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
q = - \sqrt 3 \hfill \cr
\left| {{u_1}} \right| = {1 \over 2} \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\,(I)\)
Vì dãy số \(({u_n})\) là một cấp số nhân với công bội q nên dãy số \(\left( {\left| {{u_n}} \right|} \right)\) là một cấp số nhân với công bội \(\left| q \right|\). Vì thế, kí hiệu S là tổng cần tính, từ (I) ta được.
\(S = {1 \over 2} \times {{1 - {{\left( {\sqrt 3 } \right)}^{15}}} \over {1 - \sqrt 3 }}\)
Hello!
Chương 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
SBT Ngữ văn 11 - Chân trời sáng tạo tập 2
Chương 8. Dẫn xuất halogen - ancol - phenol
SGK Toán 11 - Chân trời sáng tạo tập 1
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11