Câu 39 trang 121 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy (ABCD) và SA = a.

a) Chứng minh rằng các mặt bên của hình chóp S.ABCD là các tam giác vuông.

b) Từ A kẻ \(A{B_1} \bot SB,A{{\rm{D}}_1} \bot S{\rm{D}}\). Chứng tỏ rằng \(mp\left( {A{B_1}{D_1}} \right) \bot SC\).

Gọi C1 là giao điểm của SC với mp(AB1C1). Chứng tỏ rằng tứ giác AB1C1D1 có hai đường chéo vuông góc và tính diện tích của tứ giác đó.

Lời giải chi tiết

 

a) Dễ dàng thấy SAB, SAD là các tam giác vuông tại A.

Mặt khác \(SA \bot \left( {ABC{\rm{D}}} \right),A{\rm{D}} \bot DC\) nên \(S{\rm{D}} \bot DC\) (định lí ba đường vuông góc), do đó SDC là tam giác vuông tại D.

Tương tự , SBC là tam giác vuông tại B.

b) Dễ dàng chứng minh được

\(\eqalign{  & A{{\rm{D}}_1} \bot \left( {SC{\rm{D}}} \right)  \cr  &  \Rightarrow A{{\rm{D}}_1} \bot SC \cr} \)

Cũng như vậy, ta có \(A{B_1} \bot SC\)

Vậy \(SC \bot \left( {A{B_1}{D_1}} \right)\).

Gọi \(O = AC \cap B{\rm{D}},{O_1} = {B_1}{D_1} \cap SO\) thì \({C_1} = A{O_1} \cap SC\).

Mặt khác \(\Delta SAB = \Delta SA{\rm{D}}\left( {c.g.c} \right)\) nên B1D1 // BD.

Ta lại có

\(\eqalign{  & B{\rm{D}} \bot \left( {SAC} \right)  \cr  &  \Rightarrow {B_1}{D_1} \bot \left( {SAC} \right) \Rightarrow {B_1}{D_1} \bot A{C_1} \cr} \)

Từ đó \({S_{A{B_1}{C_1}{D_1}}} = {1 \over 2}A{C_1}.{B_1}{D_1}\)

Ta có

\(\eqalign{  & A{C_1} = {{SA.AC} \over {SC}} = {{a\sqrt 6 } \over 3}  \cr  & {{{B_1}{D_1}} \over {B{\rm{D}}}} = {{S{B_1}} \over {SB}} = {{S{B_1}.SB} \over {S{B^2}}} = {{S{A^2}} \over {S{B^2}}} = {{{a^2}} \over {2{{\rm{a}}^2}}}  \cr  &  \Rightarrow {B_1}{D_1} = {{a\sqrt 2 } \over 2} \cr} \)

(Chú ý: Có thể thấy B1, D1 thứ tự là trung điểm của SB là SD nên B1D1 // BD và \({B_1}{D_1} = {1 \over 2}B{\rm{D}}\))

Vậy \({S_{A{B_1}{C_1}{D_1}}} = {1 \over 2}.{{a\sqrt 6 } \over 3}.{{a\sqrt 2 } \over 2} = {{{a^2}\sqrt 3 } \over 6}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved