Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho (khi cần tính gần đúng thì tính chính xác đến \({1 \over {10}}\) giây)
LG a
LG a
\(2{\sin ^2}x - 3\cos x = 2,0^\circ \le x \le 360^\circ \)
Lời giải chi tiết:
\(2{\sin ^2}x - 3\cos x = 2\)
\(\begin{array}{l}
\Leftrightarrow 2\left( {1 - {{\cos }^2}x} \right) - 3\cos x - 2 = 0\\
\Leftrightarrow 2 - 2{\cos ^2}x - 3\cos x - 2 = 0\\
\Leftrightarrow - 2{\cos ^2}x - 3\cos x = 0\\
\Leftrightarrow 2{\cos ^2}x + 3\cos x = 0\\
\Leftrightarrow \cos x\left( {2\cos x + 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
2\cos x + 3 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cos x = - \frac{3}{2}\left( {loai} \right)
\end{array} \right.\\
\Leftrightarrow x = {90^0} + k{180^0},k \in Z\\
{0^0} \le x \le {360^0}\\
\Leftrightarrow {0^0} \le {90^0} + k{180^0} \le {360^0}\\
\Leftrightarrow - {90^0} \le k{180^0} \le {270^0}\\
\Leftrightarrow - \frac{1}{2} \le k \le \frac{3}{2}
\end{array}\)
Mà \(k \in Z \Rightarrow k \in \left\{ {0;1} \right\}\)
+) Với k=0 thì \(x = {90^0}\)
+) Với k=1 thì \(x = {270^0}\)
Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).
LG b
LG b
\(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)
Lời giải chi tiết:
ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\).
Ta có :
\(\begin{array}{l}
\tan x + 2\cot x = 3\\
\Leftrightarrow \tan x + \frac{2}{{\tan x}} - 3 = 0\\
\Leftrightarrow \frac{{{{\tan }^2}x + 2 - 3\tan x}}{{\tan x}} = 0\\
\Rightarrow {\tan ^2}x - 3\tan x + 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\tan x = 1\\
\tan x = 2
\end{array} \right.
\end{array}\)
+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\).
\(\begin{array}{l}
{180^0} \le x \le {360^0}\\
\Rightarrow {180^0} \le {45^0} + k{180^0} \le {360^0}\\
\Leftrightarrow {135^0} \le k{180^0} \le {315^0}\\
\Leftrightarrow \frac{3}{4} \le k \le \frac{7}{4} \Rightarrow k = 1
\end{array}\)
Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)
+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\).
Ta có thể chọn \(\alpha \approx {63^0}26'\)
\(\begin{array}{l}
{180^0} \le x \le {360^0}\\
\Rightarrow {180^0} \le {63^0}26' + k{180^0} \le {360^0}\\
\Leftrightarrow {116^0}34' \le k{180^0} \le {296^0}34'\\
\Leftrightarrow 0,64 < k < 1,65 \Rightarrow k = 1
\end{array}\)
Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :
\(x = \alpha + {180^0} \approx {243^0}26'\)
Kết luận :
Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}26'\).
Chủ đề 4: Hydrocarbon
CHƯƠNG VI: KHÚC XẠ ÁNH SÁNG
Unit 10: Cities of the Future
Chương VI. Động cơ đốt trong
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11