Tìm các giới hạn sau :
LG a
\(\mathop {\lim }\limits_{x \to - \sqrt 3 } {{{x^3} + 3\sqrt 3 } \over {3 - {x^2}}}\)
Phương pháp giải:
Phân tích tử và mẫu thành nhân tử, khử dạng vô định.
Lời giải chi tiết:
Ta có: \({{{x^3} + 3\sqrt 3 } \over {3 - {x^2}}} \) \(= {{\left( {x + \sqrt 3 } \right)\left( {{x^2} - x\sqrt 3 + 3} \right)} \over {\left( {x + \sqrt 3 } \right)\left( {\sqrt 3 - x} \right)}} \) \( = {{{x^2} - x\sqrt 3 + 3} \over {\sqrt 3 - x}}\)
với \(\,x \ne - \sqrt 3 \)
Do đó : \(\mathop {\lim }\limits_{x \to - \sqrt 3 } {{{x^3} + 3\sqrt 3 } \over {3 - {x^2}}} \) \( =\mathop {\lim }\limits_{x \to - \sqrt 3 } {{{x^2} - x\sqrt 3 + 3} \over {\sqrt 3 - x}}= {9 \over {2\sqrt 3 }} \) \( = {{3\sqrt 3 } \over 2}\)
LG b
\(\mathop {\lim }\limits_{x \to 4} {{\sqrt x - 2} \over {{x^2} - 4x}}\)
Lời giải chi tiết:
\(\eqalign{
& \mathop {\lim }\limits_{x \to 4} {{\sqrt x - 2} \over {{x^2} - 4x}} \cr &= \mathop {\lim }\limits_{x \to 4} {{\sqrt x - 2} \over {x\left( {x - 4} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{x\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\cr &= \mathop {\lim }\limits_{x \to 4} {1 \over {x\left( {\sqrt x + 2} \right)}} = {1 \over {16}} \cr} \)
Cách khác:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 4x}}\\
= \mathop {\lim }\limits_{x \to 4} \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\left( {{x^2} - 4x} \right)\left( {\sqrt x + 2} \right)}}\\
= \mathop {\lim }\limits_{x \to 4} \frac{{x - 4}}{{x\left( {x - 4} \right)\left( {\sqrt x + 2} \right)}}\\
= \mathop {\lim }\limits_{x \to 4} \frac{1}{{x\left( {\sqrt x + 2} \right)}} = \frac{1}{{16}}
\end{array}\)
LG c
\(\mathop {\lim }\limits_{x \to {1^ + }} {{\sqrt {x - 1} } \over {{x^2} - x}}\)
Lời giải chi tiết:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ + }} {{\sqrt {x - 1} } \over {{x^2} - x}} = \mathop {\lim }\limits_{x \to {1^ + }} {{\sqrt {x - 1} } \over {x\left( {x - 1} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {1 \over {x\sqrt {x - 1} }} = + \infty \cr} \)
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x\sqrt {x - 1} } \right) = 0\) và \(x\sqrt {x - 1} > 0,\forall x > 1\)
LG d
\(\mathop {\lim }\limits_{x \to 0} {{\sqrt {{x^2} + x + 1} - 1} \over {3x}}\)
Phương pháp giải:
Nhân cả tử và mẫu với \(\sqrt {{x^2} + x + 1} + 1\)
Lời giải chi tiết:
\(\eqalign{
& \mathop {\lim }\limits_{x \to 0} {{\sqrt {{x^2} + x + 1} - 1} \over {3x}} \cr &= \mathop {\lim }\limits_{x \to 0} {{{x^2} + x + 1 - 1} \over {3x(\sqrt {{x^2} + x + 1} + 1)}} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + x}}{{3x\left( {\sqrt {{x^2} + x + 1} + 1} \right)}} \cr &= \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x + 1} \right)}}{{3x\left( {\sqrt {{x^2} + x + 1} + 1} \right)}}\cr &= {1 \over 3}\mathop {\lim }\limits_{x \to 0} {{x + 1} \over {\sqrt {{x^2} + x + 1} + 1}} = {1 \over 6} \cr} \)
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Review Unit 8
SBT Toán 11 - Chân trời sáng tạo tập 2
Unit 5: Heritage sites
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11