Chứng minh rằng :
LG a
Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) liên tục trên \(\mathbb R\)
Lời giải chi tiết:
Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) xác định trên \(\mathbb R\).
Với mọi \(x_0\in\mathbb R\) ta có:
\(\mathop {\lim }\limits_{x \to {x_0}}f(x) = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^4} - {x^2} + 2} \right) \) \(= x_0^4 - x_0^2 + 2 = f\left( {{x_0}} \right)\)
Vậy f liên tục tại x0 nên f liên tục trên \(\mathbb R\).
LG b
Hàm số \(f\left( x \right) = {1 \over {\sqrt {1 - {x^2}} }}\) liên tục trên khoảng (-1 ; 1) ;
Lời giải chi tiết:
Hàm số f xác định khi và chỉ khi :
\(1 - {x^2} > 0 \Leftrightarrow - 1 < x < 1\)
Vậy hàm số f xác định trên khoảng (-1 ; 1)
Với mọi x0ϵ (-1 ; 1), ta có : \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} {1 \over {\sqrt {1 - {x^2}} }} \) \(= {1 \over {\sqrt {1 - x_0^2} }} = f\left( {{x_0}} \right)\)
Vậy hàm số f liên tục tại điểm x0. Do đó f liên tục trên khoảng (-1 ; 1)
LG c
Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) liên tục trên đoạn [-2 ; 2];
Lời giải chi tiết:
ĐKXĐ: \(8 - 2{x^2} \ge 0 \Leftrightarrow {x^2} \le 4 \Leftrightarrow - 2 \le x \le 2\)
Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) xác định trên đoạn [-2 ; 2]
Với mọi \({x_0} \in \left( { - 2;2} \right)\) , ta có: \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \sqrt {8 - 2x_0^2} = f\left( {{x_0}} \right)\)
Vậy hàm số f liên tục trên khoảng (-2 ; 2).
Ngoài ra, ta có :
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) \) \(= \sqrt {8 - 2{{\left( { - 2} \right)}^2}} = 0 = f\left( { - 2} \right)\) nên hàm số liên tục phải tại x=-2.
\(\mathop {\lim }\limits_{x \to {{\left( { 2} \right)}^ - }}\) \( = \sqrt {8 - {{2.2}^2}} = 0 = f\left( 2 \right)\) nên hàm số liên tục trái tại x=2.
Do đó hàm số f liên tục trên đoạn [-2 ; 2]
LG d
Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) liên tục trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Lời giải chi tiết:
Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) xác định trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Với \({x_0} \in \left( {{1 \over 2}; + \infty } \right)\) ta có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2x - 1} \) \(= \sqrt {2{x_0} - 1} = f\left( {{x_0}} \right)\)
Nên hàm số liên tục trên khoảng \(\left( {{1 \over 2}; + \infty } \right)\)
Mặt khác ta có \(\mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} f\left( x \right) \) \(= \mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} \sqrt {2x - 1} = 0 = f\left( {{1 \over 2}} \right)\)
Nên hàm số liên tục phải tại x=1/2.
Do đó hàm số f liên tục trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Chương 3: Đại cương hóa học hữu cơ
Chương 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Chủ đề 2. Công nghệ giống vật nuôi
Chương II. Vật liệu cơ khí
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11