ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho dãy hình vuông H1, H2, …, Hn,… Với mỗi số nguyên dương n, gọi un, pn và Sn lần lượt là độ dài cạnh, chu vi và diện tích của hình vuông Hn.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Giả sử dãy số (un) là một cấp số cộng với công sai khác 0. Hỏi khi đó các dãy số (pn) và (Sn) có phải là các cấp số cộng hay không ? Vì sao ?

Lời giải chi tiết:

Theo giả thiết ta có :

\({p_n} = 4{u_n}\text{ và }{S_n} = u_n^2\) với mọi \(n \in N^*\)

Gọi d là công sai của cấp số cộng (un) , d ≠ 0. Khi đó với mọi \(n \in N^*\), ta có :

\({p_{n + 1}} - {p_n}  = 4{u_{n + 1}} - 4{u_n}\)

\(= 4\left( {{u_{n + 1}} - {u_n}} \right) = 4d\) (không đổi)

Vậy (pn) là cấp số cộng.

\({S_{n + 1}} - {S_n}  = u_{n + 1}^2 - u_n^2\)

\(= \left( {{u_{n + 1}} - {u_n}} \right)\left( {{u_{n + 1}} + {u_n}} \right) \)

\(= d\left( {{u_{n + 1}} + {u_n}} \right)\) không là hằng số (do d ≠ 0)

Vậy (Sn) không là cấp số cộng.

LG b

Giả sử dãy số (un) là một cấp số nhân với công bội dương. Hỏi khi đó các dãy số (pn) và (Sn) có phải là các cấp số nhân hay không ? Vì sao ?

Lời giải chi tiết:

Gọi q là công bội của cấp số nhân (un), q > 0. Khi đó với mọi \(n \in N^*\), ta có :

\({{{p_{n + 1}}} \over {{p_n}}} = {{4{u_{n + 1}}} \over {4{u_n}}} = q\) (không đổi)

\({{{S_{n + 1}}} \over {{S_n}}} = {{u_{n + 1}^2} \over {u_n^2}}  = {\left( {\frac{{{u_{n + 1}}}}{{{u_n}}}} \right)^2}= {q^2}\) (không đổi)

Từ đó suy ra các dãy số (pn) và (Sn) là cấp số nhân.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved