Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3},\) biết
LG a
LG a
Tiếp điểm có hoành độ bằng -1
Phương pháp giải:
Tiếp tuyến của đồ thị hàm số tại \(M(x_0;y_0)\) là: \(y-y_0=y'(x_0)(x-x_0)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & {x_0} = - 1;{y_0} = {\left( { - 1} \right)^3} = - 1 \cr & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{{{\left( {{x_0} + \Delta x} \right)}^3} - x_0^3} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{3x_0^2\Delta x + 3{x_0}(\Delta x)^2 + {\Delta ^3}x} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} \left( {3x_0^2 + 3{x_0}\Delta x + {\Delta ^2}x} \right) = 3x_0^2 \cr} \)
Với x0 = -1 ta có \(f’(-1) = 3{\left( { - 1} \right)^2} = 3\)
Phương trình tiếp tuyến của đường cong tại tiếp điểm có hoành độ bằng -1 là :
\(y - \left( { - 1} \right) = 3\left( {x + 1} \right) \Leftrightarrow y = 3x + 2\)
LG b
LG b
Tiếp điểm có tung độ bằng 8
Lời giải chi tiết:
Với \({y_0} = 8 = x_0^3 \Rightarrow {x_0} = 2\)
\(f'\left( 2 \right) = {3.2^2} = 12\)
Phương trình tiếp tuyến cần tìm là :
\(y - 8 = 12\left( {x - 2} \right) \Leftrightarrow y = 12x - 16\)
LG c
LG c
Hệ số góc của tiếp tuyến bằng 3.
Lời giải chi tiết:
Gọi x0 là hoành độ tiếp điểm ta có :
\(f'\left( {{x_0}} \right) = 3 \Leftrightarrow 3x_0^2 = 3 \Leftrightarrow {x_0} = \pm 1\)
Với x0 = 1 ta có y0 = 1 và phương trình tiếp tuyến là :
\(y - 1 = 3\left( {x - 1} \right)\,hay\,y = 3x - 2\)
Với x0 = -1 ta có y0 = -1 và phương trình tiếp tuyến là :
\(y -(- 1) = 3\left( {x + 1} \right)\,hay\,y = 3x + 2\)
SBT Ngữ văn 11 - Kết nối tri thức tập 2
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Chuyên đề 1. Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Chuyên đề 11.2: Một số vấn đề về du lịch thế giới
Đề kiểm tra giữa học kì 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11