Đề bài
Cho dãy số (un) xác định bởi :
\({u_1} = 3\;\text{và}\;{u_{n + 1}} = \sqrt {{u_n} + 6} \) với mọi n ≥ 1
Chứng minh rằng (un) vừa là cấp số cộng, vừa là cấp số nhân.
Phương pháp giải - Xem chi tiết
Tính toán một vài số hạng đầu và dự đoán dãy số đã cho là dãy không đổi.
Chứng minh bằng quy nạp dự đoán và suy ra dãy không đổi vừa là CSC vừa là CSN.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}
{u_1} = 3\\
{u_2} = \sqrt {{u_1} + 6} = \sqrt {3 + 6} = 3\\
{u_3} = \sqrt {{u_2} + 6} = \sqrt {3 + 6} = 3\\
...
\end{array}\)
Dự đoán \({u_n} = {\rm{ }}3{\rm{ }}\;\left( 1 \right)\) với mọi n.
Ta chứng minh bằng qui nạp như sau:
+) Với \(n = 1\) ta có \({u_1} = {\rm{ }}3\), (1) đúng
+) Giả sử (1) đúng với \(n=k\) tức là: \({u_k} = {\rm{ }}3\)
+) Ta chứng minh \({u_{k{\rm{ }} + {\rm{ }}1}} = {\rm{ }}3\)
Thật vậy ta có \({u_{k + 1}} = \sqrt {{u_k} + 6} = \sqrt {3 + 6} = 3\)
Vậy \({u_n} = {\rm{ }}3, ∀n ≥ 1\) do đó (un) vừa là cấp số cộng công sai \(d = 0\) vừa là cấp số nhân công bội \(q = 1\).
PHẦN HAI. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Chủ đề 9: Một số quyền tự do cơ bản của công dân
Unit 8: Independent life
Bài 8: Tiết 1: Tự nhiên, dân cư, xã hội Liên bang Nga - Tập bản đồ Địa lí 11
Đề kiểm tra giữa học kì 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11