Chứng minh rằng :
LG a
Hàm số
\(f\left( x \right) = \left\{ {\matrix{{{{\left( {x + 1} \right)}^2}\,\text{ với }\,x \le 0} \cr {{x^2} + 2\,\text{ với }\,x > 0} \cr} } \right.\)
Gián đoạn tại điểm x = 0
Phương pháp giải:
Tính các giới hạn trái, giới hạn phải của hàm số tại x=0 suy ra kết luận.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 2} \right) = 2 \cr
& \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {\left( {x + 1} \right)^2} = 1 \cr} \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\).
Vậy hàm số f gián đoạn tại \(x = 0\)
LG b
Mỗi hàm số
\(g\left( x \right) = \sqrt {x - 3} \) \(\text{ và }\,h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} } \right.\)
liên tục trên tập xác định của nó.
Phương pháp giải:
Xét tính liên tục của mỗi hàm số trên các khoảng và tại điểm quan trọng.
Chú ý: Hàm phân thức liên tục trên TXĐ.
Hàm số f(x) liên tục tại điểm \(x_0\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Tập xác định của hàm số \(g\left( x \right) = \sqrt {x - 3} \) là \(\left[ {3; + \infty } \right)\)
Với x0> 3 ta có \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {x - 3} \) \(= \sqrt {{x_0} - 3} = g\left( {{x_0}} \right)\)
Nên g liên tục trên khoảng \(\left( {3; + \infty } \right),\) ngoài ra :
\(\mathop {\lim }\limits_{x \to {3^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \sqrt {x - 3} \) \(= 0 = g\left( 3 \right)\)
Vậy g liên tục trên \(\left[ {3; + \infty } \right)\)
*Tập xác định của hàm số
\(h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} \,\text{ là }\,\mathbb R} \right.\)
Rõ ràng h liên tục trên \((-∞; 1)\) và trên \((1 ; +∞)\) (Vì trên các khoảng này h là hàm phân thức)
Tại x0 = 1 ta có :
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {1 \over {x - 2}} = - 1;\cr &\mathop {\lim }\limits_{x \to {1^ + }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {{ - 1} \over x} = - 1 \cr
& \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} h\left( x \right) =\mathop {\lim }\limits_{x \to 1} h\left( x \right) \cr} \)
Mà h(1)=-1 nên \(\mathop {\lim }\limits_{x \to 1} h\left( x \right)=h(1)\) hay h(x) liên tục tại x=1.
Vậy h liên tục trên \(\mathbb R\).
Unit 5: Heritage sites
Chương 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Chuyên đề 2: Một số bệnh dịch ở người và cách phòng, chống
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11