Đề bài
Chứng minh rằng hàm số sau đây có đạo hàm bằng 0 với mọi \(x \in R\)
\(y = {\cos ^2}\left( {{\pi \over 3} - x} \right) + {\cos ^2}\left( {{\pi \over 3} + x} \right) \)
\(+ {\cos ^2}\left( {{{2\pi } \over 3} - x} \right) + {\cos ^2}\left( {{{2\pi } \over 3} + x} \right) - 2{\sin ^2}x\)
Lời giải chi tiết
Cách 1: Áp dụng công thức đạo hàm của hàm số hợp
\(\left( {{{\cos }^2}u} \right)' = 2\cos u\left( { - \sin u} \right).u' = - u'.\sin 2u\)
Ta được
\(\eqalign{& y' = \left[ {\sin \left( {{{2\pi } \over 3} - 2x} \right) - \sin \left( {{{2\pi } \over 3} + 2x} \right)} \right]\cr& + \left[ {\sin \left( {{{4\pi } \over 3} - 2x} \right) - \sin \left( {{{4\pi } \over 3} + 2x} \right)} \right] - 2\sin 2x \cr& \,\,\,\,\,\, = 2\cos {{2\pi } \over 3}.\sin \left( { - 2x} \right) + 2\cos {{4\pi } \over 3}.\sin \left( { - 2x} \right) \cr&- 2\sin 2x\,\,\left( {\forall x \in R} \right) \cr} \)
Vì \(\cos {{2\pi } \over 3} = \cos {{4\pi } \over 2} = - {1 \over 2}\) nên
\(y' = \sin 2x + \sin 2x - 2\sin 2x = 0\)
Cách 2: Áp dụng công thức hạ bậc
\({\cos ^2}u = {{1 + \cos 2u} \over 2}\)
Ta chứng minh được \(y = 1\). Vậy \(y' = 0\)
CHƯƠNG I. ĐIỆN TÍCH. ĐIỆN TRƯỜNG
Bài 9. Nhìn, nghe, phát hiện địch, chỉ mục tiêu, truyền tin liên lạc, báo cáo
Chủ đề 1: Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Unit 6: Social issues
Unit 11: Careers
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11