PHẦN GIẢI TÍCH - TOÁN 12

Bài 6 trang 128 SGK Giải tích 12

Đề bài

Cho hình phẳng giới hạn bởi các đường thẳng \( y = \sqrt x\) và \(y = x\) quay xung quanh trục \(Ox\). Thể tích của khối tròn xoay tại thành bằng:

A. \(0\)                          B. \(– π\)                          

C. \(π\)                         D. \(\displaystyle{\pi  \over 6}\)

Phương pháp giải - Xem chi tiết

Quay hình phẳng được giới hạn bởi các đồ thị hàm số \(y=f(x); \, \, y=g(x)\) và các đường thẳng \(x=a;\, \, y=b \, (a<b)\) quanh trục \(Ox\) thì thể tích của hình phẳng đó được tính bởi công thức: \(V = \pi \displaystyle \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx.} \)

Lời giải chi tiết

Phương trình hoành độ giao điểm của hai đường thẳng \(y = \sqrt x\)  và \(y = x\) là:

\(x = \sqrt x ⇔ x = 0\) hoặc \(x = 1\)

Thể tích của khối tròn xoay tạo thành bằng:

\(V = \pi \displaystyle \int\limits_0^1 {\left| {{{\left( {\sqrt x } \right)}^2} - {x^2}} \right|dx}  \) \(= \pi \displaystyle \int\limits_0^1 {\left| {x - {x^2}} \right|dx} \)

Với \(0 \le x \le 1\) thì \(x \ge {x^2}\) nên:

\(\displaystyle V = \pi \int_0^1 {(x - {x^2}} )dx = \pi \left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = {\pi  \over 6}\)

Chọn đáp án D.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved