Đề bài
Cho hình phẳng giới hạn bởi các đường thẳng \( y = \sqrt x\) và \(y = x\) quay xung quanh trục \(Ox\). Thể tích của khối tròn xoay tại thành bằng:
A. \(0\) B. \(– π\)
C. \(π\) D. \(\displaystyle{\pi \over 6}\)
Phương pháp giải - Xem chi tiết
Quay hình phẳng được giới hạn bởi các đồ thị hàm số \(y=f(x); \, \, y=g(x)\) và các đường thẳng \(x=a;\, \, y=b \, (a<b)\) quanh trục \(Ox\) thì thể tích của hình phẳng đó được tính bởi công thức: \(V = \pi \displaystyle \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx.} \)
Lời giải chi tiết
Phương trình hoành độ giao điểm của hai đường thẳng \(y = \sqrt x\) và \(y = x\) là:
\(x = \sqrt x ⇔ x = 0\) hoặc \(x = 1\)
Thể tích của khối tròn xoay tạo thành bằng:
\(V = \pi \displaystyle \int\limits_0^1 {\left| {{{\left( {\sqrt x } \right)}^2} - {x^2}} \right|dx} \) \(= \pi \displaystyle \int\limits_0^1 {\left| {x - {x^2}} \right|dx} \)
Với \(0 \le x \le 1\) thì \(x \ge {x^2}\) nên:
\(\displaystyle V = \pi \int_0^1 {(x - {x^2}} )dx = \pi \left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = {\pi \over 6}\)
Chọn đáp án D.
Chương 1. Cơ chế di truyền và biến dị
Đề khảo sát chất lượng đầu năm
Nghị luận xã hội lớp 12
Đề kiểm tra 15 phút - Chương 1 – Hóa học 12
Tải 5 đề kiểm tra 45 phút (1 tiết ) – Chương 8 – Hóa học 12