Câu 78 trang 129 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho tam giác đề ABC có chiều cao AH = 5a. Điểm O thuộc đoạn thẳng AH sao cho AO = a. Điểm S trên đường thẳng vuông góc với mặt phẳng (ABC) tại O và SO = 2a.

a) Chứng mịn AS và CS vuông góc với nhau. Tính góc giữa hai đường thẳng AB và SC.

b) Gọi I là trung điểm của OH; (α) là mặt phẳng đi qua điểm I và vuông góc với AH. Thiết diện của hình chóp S.ABC khi cắt bởi (α) là hình gì? Tính diện tích thiết diện.

Lời giải chi tiết

 

a) Dễ thấy

\(\eqalign{  & BC = {{10{\rm{a}}} \over {\sqrt 3 }}  \cr  & S{A^2} = S{O^2} + A{O^2}  \cr  &  = 4{{\rm{a}}^2} + {a^2} = 5{{\rm{a}}^2}  \cr  & S{C^2} = S{O^2} + A{O^2}  \cr  &  = 4{{\rm{a}}^2} + 16{{\rm{a}}^2} + {{25{{\rm{a}}^2}} \over 3}  \cr  &  = {{85{a^2}} \over 3}  \cr  & A{C^2} = {{100{{\rm{a}}^2}} \over 3} \cr} \)

Ta có \(S{A^2} + S{C^2} = A{C^2}\)

Vậy \(SA \bot SC\).

+ Kẻ AD song song và bằng BC (hai tia AD, BC cùng chiều) thì góc giữa AB và SC chính là góc giữa CD và SC, đó là \(\widehat {SC{\rm{D}}}\) hoặc \({180^0} - \widehat {SC{\rm{D}}}\).

Dễ thấy \(SA \bot BC\), do AD // BC nên \(SA \bot A{\rm{D}}\), tức là tam giác SAD vuông.

Do đó \(S{{\rm{D}}^2} = S{A^2} + A{{\rm{D}}^2} = 5{{\rm{a}}^2} + {{100{{\rm{a}}^2}} \over 3} = {{115{{\rm{a}}^2}} \over 3}\),

mặt khác \(S{{\rm{D}}^2} = S{C^2} + D{C^2} - 2{\rm{S}}C.DC\cos \widehat {SCD}\)

nên ta có

\(\eqalign{& {{115{{\rm{a}}^2}} \over 3} \cr & = {{85{{\rm{a}}^2}} \over 3} + {{100{{\rm{a}}^2}} \over 3} - 2.{{a\sqrt {85} } \over {\sqrt 3 }}.{{10{\rm{a}}} \over {\sqrt 3 }}\cos \widehat {SCD} \cr & \Rightarrow \cos \widehat {SCD} = {7 \over {2\sqrt {85} }} \cr} \)

Vậy góc giữa AB và SC là α mà

\(\cos \alpha  = {7 \over {2\sqrt {85} }}\).

Do \(\left( \alpha  \right) \bot AH,SO \bot AH\) và \(BC \bot AH\) nên SO và BC cùng song song với (α). Khi đó \(\left( \alpha  \right) \cap \left( {ABC} \right) = MN\), MN qua I và MN // BC

\(\eqalign{  & \left( \alpha  \right) \cap \left( {SOH} \right) = IJ,IJ//SO  \cr  & \left( \alpha  \right) \cap \left( {SBC} \right) = PQ \cr} \)

PQ qua J và PQ // BC.

Dễ thấy MNPQ là hình thang cân với chiều cao JI.

Ta có :

\(\eqalign{  & {\rm{IJ}} = {1 \over 2}SO = a  \cr  & PQ = {1 \over 2}BC = {{5{\rm{a}}} \over {\sqrt 3 }}  \cr  & {{MN} \over {BC}} = {{3{\rm{a}}} \over {5{\rm{a}}}} \Rightarrow MN = {{10{\rm{a}}.3} \over {\sqrt 3 .5}} = 2{\rm{a}}\sqrt 3 . \cr} \)

Suy ra

\(\eqalign{  & {S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).{\rm{IJ}}  \cr  &  = {1 \over 2}\left( {2{\rm{a}}\sqrt 3  + {{5{\rm{a}}} \over {\sqrt 3 }}} \right).a = {{11{{\rm{a}}^2}} \over {2\sqrt 3 }} \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved