Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tam giác đề ABC có chiều cao AH = 5a. Điểm O thuộc đoạn thẳng AH sao cho AO = a. Điểm S trên đường thẳng vuông góc với mặt phẳng (ABC) tại O và SO = 2a.
a) Chứng mịn AS và CS vuông góc với nhau. Tính góc giữa hai đường thẳng AB và SC.
b) Gọi I là trung điểm của OH; (α) là mặt phẳng đi qua điểm I và vuông góc với AH. Thiết diện của hình chóp S.ABC khi cắt bởi (α) là hình gì? Tính diện tích thiết diện.
Lời giải chi tiết
a) Dễ thấy
\(\eqalign{ & BC = {{10{\rm{a}}} \over {\sqrt 3 }} \cr & S{A^2} = S{O^2} + A{O^2} \cr & = 4{{\rm{a}}^2} + {a^2} = 5{{\rm{a}}^2} \cr & S{C^2} = S{O^2} + A{O^2} \cr & = 4{{\rm{a}}^2} + 16{{\rm{a}}^2} + {{25{{\rm{a}}^2}} \over 3} \cr & = {{85{a^2}} \over 3} \cr & A{C^2} = {{100{{\rm{a}}^2}} \over 3} \cr} \)
Ta có \(S{A^2} + S{C^2} = A{C^2}\)
Vậy \(SA \bot SC\).
+ Kẻ AD song song và bằng BC (hai tia AD, BC cùng chiều) thì góc giữa AB và SC chính là góc giữa CD và SC, đó là \(\widehat {SC{\rm{D}}}\) hoặc \({180^0} - \widehat {SC{\rm{D}}}\).
Dễ thấy \(SA \bot BC\), do AD // BC nên \(SA \bot A{\rm{D}}\), tức là tam giác SAD vuông.
Do đó \(S{{\rm{D}}^2} = S{A^2} + A{{\rm{D}}^2} = 5{{\rm{a}}^2} + {{100{{\rm{a}}^2}} \over 3} = {{115{{\rm{a}}^2}} \over 3}\),
mặt khác \(S{{\rm{D}}^2} = S{C^2} + D{C^2} - 2{\rm{S}}C.DC\cos \widehat {SCD}\)
nên ta có
\(\eqalign{& {{115{{\rm{a}}^2}} \over 3} \cr & = {{85{{\rm{a}}^2}} \over 3} + {{100{{\rm{a}}^2}} \over 3} - 2.{{a\sqrt {85} } \over {\sqrt 3 }}.{{10{\rm{a}}} \over {\sqrt 3 }}\cos \widehat {SCD} \cr & \Rightarrow \cos \widehat {SCD} = {7 \over {2\sqrt {85} }} \cr} \)
Vậy góc giữa AB và SC là α mà
\(\cos \alpha = {7 \over {2\sqrt {85} }}\).
Do \(\left( \alpha \right) \bot AH,SO \bot AH\) và \(BC \bot AH\) nên SO và BC cùng song song với (α). Khi đó \(\left( \alpha \right) \cap \left( {ABC} \right) = MN\), MN qua I và MN // BC
\(\eqalign{ & \left( \alpha \right) \cap \left( {SOH} \right) = IJ,IJ//SO \cr & \left( \alpha \right) \cap \left( {SBC} \right) = PQ \cr} \)
PQ qua J và PQ // BC.
Dễ thấy MNPQ là hình thang cân với chiều cao JI.
Ta có :
\(\eqalign{ & {\rm{IJ}} = {1 \over 2}SO = a \cr & PQ = {1 \over 2}BC = {{5{\rm{a}}} \over {\sqrt 3 }} \cr & {{MN} \over {BC}} = {{3{\rm{a}}} \over {5{\rm{a}}}} \Rightarrow MN = {{10{\rm{a}}.3} \over {\sqrt 3 .5}} = 2{\rm{a}}\sqrt 3 . \cr} \)
Suy ra
\(\eqalign{ & {S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).{\rm{IJ}} \cr & = {1 \over 2}\left( {2{\rm{a}}\sqrt 3 + {{5{\rm{a}}} \over {\sqrt 3 }}} \right).a = {{11{{\rm{a}}^2}} \over {2\sqrt 3 }} \cr} \)
Unit 7: Things that Matter
Chương 2: Nitrogen và sulfur
Tải 10 đề kiểm tra 15 phút - Chương VI - Hóa học 11
SGK Toán 11 - Cánh Diều tập 2
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương II - Hóa học 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11