Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi I là điểm thuộc AB; đặt
a) Khi góc giữa hai đường thẳng AC’ và DI bằng 60°, hãy xác định vj trí của điểm I.
b) Tính theo a và x diện tích thiết diện của hình lập phương khi cắt bởi mặt phẳng (B’DI). Tìm x để diện tích ấy là nhỏ nhấ.
c) Tính khoảng cách từ đến mặt phẳng (B’DI) theo a và x.
Lời giải chi tiết
a) Cách 1.
Đặt α là góc giữa DI và AC’ thì
Khi ấy
Hệ thức trên xác định vị trí điểm I.
Cách 2.
Kẻ
Do giả thiết góc giữa hai đường thẳng AC’ và DI bằng 60° nên
Ta có :
- Trường hơp
hay
Trường hợp
Điều này không xảy ra vì 0 < x < a.
Vậy khi
b) Gọi
thì thiết diện của hình lập phương khi cắt bởi mp(B’DI) là tứ giác DIB’K.
Dễ thấy đó là hình bình hành
Mặt khác
và
Từ đó
Dễ thấy
c) Gọi khoảng cách từ C đến mp(B’ID), do tứ diện CDEF có CD, CE , CF đôi một vuông góc nên
Mặt khác do AD // BE nên
từ đó
và
Tương tự như trên, ta có
Như vậy
do vậy
Chương 2. Nitrogen và sulfur
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chuyên đề 1. Trường hấp dẫn
Chủ đề 1: Vai trò, tác dụng của môn bóng rổ; kĩ thuật di chuyển và kĩ thuật dẫn bóng
SBT tiếng Anh 11 mới tập 1
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11