PHẦN GIẢI TÍCH - TOÁN 12

Câu hỏi 4 trang 36 SGK Giải tích 12

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = - {x^4} + 2{x^2}+ 3.\)

Bằng đồ thị, biện luận theo \(m\) số nghiệm của phương trình \(- {x^4} + 2{x^2}+ 3=m.\)

Lời giải chi tiết

* Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = - {x^4} + 2{x^2}+ 3.\)

1.TXĐ: \(D = \mathbb R\).

2. Sự biến thiên:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr} \)

\(y =  - 4{x^3}\; + {\rm{ }}4x.\) Cho \(y’ = 0 ⇒ x = 0\) hoặc \(x = ±1.\)

Bảng biến thiên

Hàm số đồng biến trên: \(\left( { - \infty , - 1} \right);\;\left( {0,1} \right).\)

Hàm số nghịch biến trên: \(\left( { - 1,0} \right){\rm{; }}\left( {1, + \infty } \right).\)

Hàm số đạt cực đại bằng 4 tại \(x = -1\) và \(x = 1.\)

Hàm số đạt cực tiểu bằng 3 tại \(x = 0.\)

Đồ thị

* Giải biện luận phương trình \(- {x^4} + 2{x^2}+ 3=m.\)

Số giao điểm của hai đồ thị \(y = - {x^4} + 2{x^2}+ 3\) và \(y = m\) là số nghiệm của phương trình trên.

Với \(m > 4\) Hai đồ thị không giao nhau nên phương trình vô nghiệm.

Với \(m = 4\) hoặc \(m < 3:\) Hai đồ thị giao nhau tại 2 điểm phân biệt nên phương trình có hai nghiệm phân biệt.

Với \(m = 3\). Hai đồ thị giao nhau tại 3 điểm phân biệt nên phương trình có ba nghiệm phân biệt.

Với \(3 < m < 4:\) Hai đồ thị giao nhau tại 4 điểm phân biệt nên phương trình có bốn nghiệm phân biệt.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved