PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 1 - Bài 7 - Chương 4 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 4

Đề bài

Đề bài

Bài 1: Giải phương trình : \(9{x^4} + 2{x^2} - 32 = 0.\)

Bài 2: Không giải phương trình, chứng tỏ phương trình \({x^4} + 2{x^2} - 5 = 0\) luôn có hai nghiệm khác dấu.

Bài 3: Giải phương trình : \({{4x} \over {x + 1}} + {{x + 3} \over x} = 6.\)

LG bài 1

LG bài 1

Phương pháp giải:

Giải phương trình bằng phương pháp đặt ẩn phụ

Lời giải chi tiết:

Bài 1: Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình:

\(9{t^2} + 2t - 32 = 0 \Leftrightarrow \left[ \matrix{  t = {{16} \over 9} \hfill \cr  t =  - 2 \hfill \cr}  \right.\)

Vì \(t ≥ 0\) nên ta chọn \(t = {{16} \over 9}.\) Vậy \({x^2} = {{16} \over 9} \Leftrightarrow x =  \pm {4 \over 3}.\)

LG bài 2

LG bài 2

Phương pháp giải:

Đặt ẩn phụ đưa về phương trình bậc hai

Chỉ ra phương trình bậc hai trên có một nghiệm dương

Suy ra phương trình ban đầu có 2 nghiệm trái dấu

Lời giải chi tiết:

Bài 2: Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình : \({t^2} + 2t - 5 = 0\)

\(a = 1; c = − 5  \Rightarrow  ac < 0\). Vậy phương trình có hai nghiệm khác dấu \({t_1} < 0 < {t_2}\). Khi đó phương trình trùng phương đã cho có hai nghiệm \({x_1} =  - \sqrt {{t_2}} ;{x_2} = \sqrt {{t_2}} .\) Ta có \(x_1, x_2\) khác dấu.

LG bài 4

LG bài 4

Phương pháp giải:

Tìm điều kiện

Quy đồng bỏ mẫu rồi quy về phương trình bậc hai một ẩn

Lời giải chi tiết:

Bài 3: Ta có : \({{4x} \over {x + 1}} + {{x + 3} \over x} = 6 \)

\(\Leftrightarrow \left\{ \matrix{  x \ne 0 \hfill \cr  x \ne  - 1 \hfill \cr  4{x^2} + \left( {x + 3} \right)\left( {x + 1} \right) = 6x\left( {x + 1} \right) \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ne 0 \hfill \cr  x \ne  - 1 \hfill \cr  {x^2} + 2x - 3 = 0 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  x = 1 \hfill \cr  x =  - 3. \hfill \cr}  \right.\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved