PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 2 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3

Đề bài

Đề bài

Bài 1. Cho hai đường thẳng (d1) : \(y = -2x + 1\) và (d2) : \(y = (2m – 3 )x + 3 – m .\) 

Tìm m để đường thẳng (d2) đi qua điểm A thuộc (d1) và điểm A có tung độ bằng 3. 

Bài 2. Cho đường thẳng (d): \(y = -3x\). Viết phương trình của đường thẳng (d’) song song với (d) và có tung độ gốc bằng 2.

Bài 3. Cho ba điểm \(A(0; -3), B(1; -1), C(-1; -5).\) Chứng tỏ A, B, C thẳng hàng.

LG bài 1

LG bài 1

Phương pháp giải:

Tìm tọa độ điểm A rồi thay tọa độ đó vào phương trình đường thẳng \(d_2\) để tìm \(m\).

Lời giải chi tiết:

Đặt \(A\left( {{x_0};3} \right),A \in \left( {{d_1}} \right) \)\(\;\Rightarrow 3 =  - 2{x_0} + 1 \Rightarrow {x_0} =  - 1\)

Vậy \(A(-1 ; 3)\) 

Lại có (d2) qua A nên : \(3 = \left( {2m - 3} \right).\left( { - 1} \right) + 3 - m\)\( \Leftrightarrow m = 1\)

LG bài 2

LG bài 2

Phương pháp giải:

Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a', b ≠ b'\)

Lời giải chi tiết:

Vì (d’) // (d) nên phương trình đường thẳng của (d’) là : \(y = -3x + b\) (\(b\ne 0\))

Đường thẳng (d’) có tung độ gốc bằng \(2 ⇒ b = 2\) (thỏa mãn)

Vậy phương trình của (d’) là \(y = -3x + 2\).

LG bài 3

LG bài 3

Phương pháp giải:

Viết phương trình đường thẳng d đi qua hai điểm A và B

Rồi thay tọa độ điểm C vào phương trình đường thẳng d, từ đó suy ra \(C\in d\) hay A, B, C thẳng hàng. 

Lời giải chi tiết:

Đường thẳng (d) qua A và B có phương trình : \(y = ax + b\)

Vì \(A ∈ (d) ⇒ -3 = a.0 + b ⇒ b = -3\) 

Khi đó, ta có: \(y = ax – 3\)

Vì \(B \in \left( d \right) \Rightarrow  - 1 = a.1 - 3 \Rightarrow a = 2\)

Vậy (d) : \(y = 2x – 3\)

Thế tọa độ của \(C(-1; -5)\) vào phương trình của (d), ta được :

\( - 5 = 2.\left( { - 1} \right) - 3 \Leftrightarrow  - 5 =  - 5\) (luôn đúng)

Vậy \(C ∈ (d)\). Chứng tỏ \(A, B, C\) thẳng hàng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved