1. Nội dung câu hỏi
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 1} \left( {{x^3} - 3x} \right)\);
b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} \);
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{4 - x}}{{2x + 1}}\).
2. Phương pháp giải
Sử dụng kiến thức về định nghĩa giới hạn để tính: Cho điểm \({x_0}\) thuộc khoảng K và hàm số \(y = f\left( x \right)\) có giới hạn hữu hạn là số L khi x dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), thì \(f\left( {{x_n}} \right) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) hay \(f\left( x \right) \to L\) khi \(x \to {x_0}\).
3. Lời giải chi tiết
a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \ne - 1\) với mọi n và \({x_n} \to - 1\) khi \(n \to + \infty \).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^3 - 3{x_n}} \right) = \lim x_n^3 - 3\lim {x_n} = {\left( { - 1} \right)^3} - 3.\left( { - 1} \right) = 2\)
Vậy \(\mathop {\lim }\limits_{x \to - 1} \left( {{x^3} - 3x} \right) = 2\);
b) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \ge \frac{{ - 5}}{2},{x_n} \ne 2\) với mọi n và \(\lim {x_n} = 2\)
Ta có: \(\lim \sqrt {2{x_n} + 5} = \sqrt {2\lim {x_n} + \lim 5} = \sqrt {2.2 + 5} = 3\)
Vậy \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} = 3\);
c) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = + \infty \).
Ta có: \(\lim \frac{{4 - {x_n}}}{{2{x_n} + 1}}\)\( = \lim \frac{{\frac{4}{{{x_n}}} - 1}}{{2 + \frac{1}{{{x_n}}}}}\)\( = \frac{{\lim \frac{4}{{{x_n}}} - \lim 1}}{{\lim 2 + \lim \frac{1}{{{x_n}}}}}\)\( = \frac{{0 - 1}}{{2 + 0}} = \frac{{ - 1}}{2}\)
Vậy \(\mathop {\lim }\limits_{x \to + \infty } \frac{{4 - x}}{{2x + 1}} = \frac{{ - 1}}{2}\).
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
SBT Ngữ văn 11 - Kết nối tri thức tập 2
CHƯƠNG VI. KHÚC XẠ ÁNH SÁNG
Chủ đề 2: Kĩ thuật dừng bóng và kĩ thuật đánh đầu
SGK Toán 11 - Chân trời sáng tạo tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11