Giải các phương trình sau:
LG a
\(\dfrac{{2x}}{3} + \dfrac{{2x - 1}}{6} = 4 - \dfrac{x}{3}\)
Phương pháp giải:
Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\).
Lời giải chi tiết:
\(\eqalign{
& {{2x} \over 3} + {{2x - 1} \over 6} = 4 - {x \over 3} \cr
& \Leftrightarrow {{2.2x} \over 6} + {{2x - 1} \over 6} = {{4.6} \over 6} - {{2x} \over 6} \cr
& \Leftrightarrow 2.2x + 2x - 1 = 4.6 - 2x \cr
& \Leftrightarrow 4x + 2x - 1 = 24 - 2x \cr
& \Leftrightarrow 6x - 1 = 24 - 2x \cr
& \Leftrightarrow 6x + 2x = 24 + 1 \cr
& \Leftrightarrow 8x = 25 \cr
& \Leftrightarrow x = {{25} \over 8} \cr} \)
Vậy phương trình có nghiệm \(x = \dfrac{25} { 8}.\)
LG b
\(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{4} = 1 - \dfrac{{2\left( {x - 1} \right)}}{3}\)
Phương pháp giải:
Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\).
Lời giải chi tiết:
\(\eqalign{
& {{x - 1} \over 2} + {{x - 1} \over 4} = 1 - {{2\left( {x - 1} \right)} \over 3} \cr
& \Leftrightarrow {{x - 1} \over 2} + {{x - 1} \over 4} = 1 - {{2x - 2} \over 3} \cr} \)
\(\displaystyle \Leftrightarrow {{6\left( {x - 1} \right)} \over {12}} + {{3\left( {x - 1} \right)} \over {12}} \) \(\displaystyle = {{12} \over {12}} - {{4\left( {2x - 2} \right)} \over {12}} \)
\( \Leftrightarrow 6\left( {x - 1} \right) + 3\left( {x - 1} \right) \) \(= 12 - 4\left( {2x - 2} \right) \)
\( \Leftrightarrow 6x - 6 + 3x - 3 = 12 - 8x + 8 \)
\( \Leftrightarrow 6x + 3x + 8x = 12 + 8 + 6 + 3 \)
\( \Leftrightarrow 17x = 29 \)
\(\displaystyle\Leftrightarrow x = {{29} \over {17}}\)
Vậy phương trình có nghiệm \(x = \dfrac{{29}}{{17}}.\)
LG c
\(\dfrac{{2 - x}}{{2001}} - 1 = \dfrac{{1 - x}}{{2002}} - \dfrac{x}{{2003}}\)
Phương pháp giải:
Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\).
Lời giải chi tiết:
\(\displaystyle {{2 - x} \over {2001}} - 1 = {{1 - x} \over {2002}} - {x \over {2003}} \)
\(\displaystyle \Leftrightarrow {{2 - x} \over {2001}} - 1 + 2 \) \(\displaystyle= {{1 - x} \over {2002}} + 1 + 1 - {x \over {2003}} \)
\(\displaystyle\Leftrightarrow {{2 - x} \over {2001}} + 1 \) \(\displaystyle= \left( {{{1 - x} \over {2002}} + 1} \right) + \left( {1 - {x \over {2003}}} \right) \)
\(\displaystyle \Leftrightarrow {{2003 - x} \over {2001}} \) \(\displaystyle= {{2003 - x} \over {2002}} + {{2003 - x} \over {2003}} \)
\(\displaystyle \Leftrightarrow {{2003 - x} \over {2001}} - {{2003 - x} \over {2002}} \) \(\displaystyle- {{2003 - x} \over {2003}} = 0 \)
\(\displaystyle \Leftrightarrow \left( {2003 - x} \right) \) \(\displaystyle\left( {{1 \over {2001}} - {1 \over {2002}} - {1 \over {2003}}} \right) = 0 \)
\( \Leftrightarrow 2003 - x = 0 \)
\( \Leftrightarrow x = 2003 \)
(Vì \(\dfrac{1}{{2001}} - \dfrac{1}{{2002}} - \dfrac{1}{{2003}} \ne 0\).)
Vậy phương trình có nghiệm \(x = 2003.\)
Tải 10 đề kiểm tra 1 tiết - Chương 10
Bài 2. Tôn trọng sự đa dạng của các dân tộc
Bài 9. Phòng ngừa tai nạn vũ khí, cháy, nổ và các chất độc hại
Bài 9. Phòng ngừa tai nạn vũ khí, cháy, nổ và các chất độc hại
Unit 8: Have You Ever Been to a Festival?
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8