Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I. Hệ thức lượng trong tam giác vuông
Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Ôn tập chương II. Đường tròn
Đề bài
Cho đường tròn tâm \(O\) bán kính \(OA\) và đường tròn đường kính \(OA\).
a) Hãy xác định vị trí tương đối của hai đường tròn.
b) Dây \(AD\) của đường tròn lớn cắt đường tròn nhỏ ở \(C\). Chứng minh rằng \(AC=CD\).
Phương pháp giải - Xem chi tiết
Tìm \({\rm{OO}}'\) và \(R+r\) hoặc \(R - r\) rồi dùng bảng sau:
Lời giải chi tiết
a) Gọi \(O'\) là trung điểm của \(OA.\) Đường tròn \(\left( O \right)\) có bán kính là \(OA,\) đường tròn \(\left( {O'} \right)\) có bán kính là \(O'A.\)
Ta có \({\rm{OO}}' = OA - O'A\) nên hai đường tròn \(\left( O \right)\) và \(\left( {O'} \right)\) có vị trí tiếp xúc trong.
b) Tam giác \(ACO\) nội tiếp đường tròn đường kính \(AO\) nên \(\widehat {ACO} = {90^o}.\)
Tam giác \(AOD\) có \(OA = OD\) (bán kính) nên là tam giác cân tại \(O,\) \(OC\) là đường cao nên cũng là đường trung tuyến, do đó \(AC = CD.\)
Đề thi vào 10 môn Văn Hậu Giang
Đề thi vào 10 môn Văn Hưng Yên
CHƯƠNG III. ADN VÀ GEN
Bài 5
Đề thi vào 10 môn Văn Gia Lai