Đề bài
Cho mẫu số liệu: 3 4 6 9 13
a) Trung vị của mẫu số liệu trên là:
A. 7 B. 6 C. 6,5 D. 8
b) Số trung bình cộng của mẫu số liệu trên là:
A. 7 B. 6 C. 6,5 D. 8
c) Khoảng biến thiên của mẫu số liệu trên là:
A. 7 B. 6 C. 1 D. 10
d) Tứ phân vị của mẫu số liệu trên là:
A. \({Q_1} = 4;{Q_2} = 6;{Q_3} = 9\) B. \({Q_1} = 3,5;{Q_2} = 6;{Q_3} = 9\)
C. \({Q_1} = 4;{Q_2} = 6;{Q_3} = 11\) D. \({Q_1} = 3,5;{Q_2} = 6;{Q_3} = 11\)
e) Khoảng tứ phân vị của mẫu số liệu trên là:
A. 7,5 B. 6 C. 1 D. 10
g) Phương sai của mẫu số liệu trên là:
A. 66 B. 13,2 C. \(\sqrt {66} \) D. \(\sqrt {13,2} \)
h) Độ lệch chuẩn của mẫu số liệu trên là:
A. 66 B. 13,2 C. \(\sqrt {66} \) D. \(\sqrt {13,2} \)
Phương pháp giải - Xem chi tiết
- Dùng công thức tính số trung bình: \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)
- Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
- Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)
- Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)
Lời giải chi tiết
3 4 6 9 13
a) Vì \(n = 5\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 6\) là tứ phân vị
Chọn B.
b) Số trung bình của mẫu số liệu là: \(\overline x = \frac{{3 + 4 + 6 + 9 + 13}}{5} = 7\)
Chọn A.
c) Số cao nhất và thấp nhất lần lượt là 13 và 3 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 13 - 3 = 10\)
Chọn D.
d)
+ Vì \(n = 5\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 6\) là tứ phân vị
+ Tứ phân vị thứ nhất là trung vị của 2 số đầu tiên của mẫu số liệu: \({Q_1} = \left( {3 + 4} \right):2 = 3,5\)
+ Tứ phân vị thứ ba là trung vị của 2 số cuối của mẫu số liệu: \({Q_3} = \left( {9 + 13} \right):2 = 11\)
Chọn D.
e) + Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 11 - 3,5 = 7,5\)
Chọn A.
g) Phương sai: \({S^2} = \frac{1}{5}({3^2} + {4^2} + {6^2} + {9^2} + {13^2}) - {7^2} = 13,2\)
Chọn B.
h) Độ lệch chuẩn: \(S = \sqrt {{S^2}} = \sqrt {13,2} \)
Chọn D.
Unit 2: Entertainment and Leisure
Chuyên đề 1. Tập nghiên cứu và viết báo cáo về một vấn đề văn hóa dân gian
Chương 8. Địa lí dân cư
Chủ đề 2. Lực và chuyển động
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 10
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10