1. Nội dung câu hỏi
Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to 4} g\left( x \right) = - 3\). Tìm các giới hạn:
a) \(\mathop {\lim }\limits_{x \to 4} \left[ {g\left( x \right) - 3f\left( x \right)} \right]\);
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{2f\left( x \right).g\left( x \right)}}{{{{\left[ {f\left( x \right) + g\left( x \right)} \right]}^2}}}\).
2. Phương pháp giải
a) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
b) + Sử dụng kiến thức về các phép tính giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
3. Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to 4} \left[ {g\left( x \right) - 3f\left( x \right)} \right] \) \( = \mathop {\lim }\limits_{x \to 4} g\left( x \right) - 3\mathop {\lim }\limits_{x \to 4} f\left( x \right) \) \( = - 3 - 3.2 \) \( = - 9\);
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{2f\left( x \right).g\left( x \right)}}{{{{\left[ {f\left( x \right) + g\left( x \right)} \right]}^2}}} \) \( = \frac{{2\mathop {\lim }\limits_{x \to 4} f\left( x \right).\mathop {\lim }\limits_{x \to 4} g\left( x \right)}}{{{{\left[ {\mathop {\lim }\limits_{x \to 4} f\left( x \right) + \mathop {\lim }\limits_{x \to 4} g\left( x \right)} \right]}^2}}} \) \( = \frac{{2.2.\left( { - 3} \right)}}{{{{\left( {2 - 3} \right)}^2}}} \) \( = - 12\).
Skills (Units 7 - 8)
SGK Toán 11 - Kết nối tri thức với cuộc sống tập 1
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VI - Hóa học 11
SGK Ngữ văn 11 - Kết nối tri thức với cuộc sống tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11