1. Nội dung câu hỏi
Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to 4} g\left( x \right) = - 3\). Tìm các giới hạn:
a) \(\mathop {\lim }\limits_{x \to 4} \left[ {g\left( x \right) - 3f\left( x \right)} \right]\);
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{2f\left( x \right).g\left( x \right)}}{{{{\left[ {f\left( x \right) + g\left( x \right)} \right]}^2}}}\).
2. Phương pháp giải
a) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
b) + Sử dụng kiến thức về các phép tính giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
3. Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to 4} \left[ {g\left( x \right) - 3f\left( x \right)} \right] \) \( = \mathop {\lim }\limits_{x \to 4} g\left( x \right) - 3\mathop {\lim }\limits_{x \to 4} f\left( x \right) \) \( = - 3 - 3.2 \) \( = - 9\);
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{2f\left( x \right).g\left( x \right)}}{{{{\left[ {f\left( x \right) + g\left( x \right)} \right]}^2}}} \) \( = \frac{{2\mathop {\lim }\limits_{x \to 4} f\left( x \right).\mathop {\lim }\limits_{x \to 4} g\left( x \right)}}{{{{\left[ {\mathop {\lim }\limits_{x \to 4} f\left( x \right) + \mathop {\lim }\limits_{x \to 4} g\left( x \right)} \right]}^2}}} \) \( = \frac{{2.2.\left( { - 3} \right)}}{{{{\left( {2 - 3} \right)}^2}}} \) \( = - 12\).
Chuyên đề 1: Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
HÌNH HỌC SBT - TOÁN 11
Chương V. Công nghệ chăn nuôi
CHƯƠNG 8: DẪN XUẤT HALOGEN - ANCOL - PHENOL
Chương 3. Cacbon-Silic
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11