Đề bài
Cho các điểm A, B, C, D, E, F như Hình 4.58.
a) Tìm ba cặp tam giác vuông bằng nhau và giải thích vì sao chúng bằng nhau.
b) Chứng minh \(\Delta ADE = \Delta ADF\).
Phương pháp giải - Xem chi tiết
a) Các cặp tam giác bằng nhau:
-\(\Delta ABD = \Delta ACD\left( {ch - gn} \right)\)
-\(\Delta ABF = \Delta ACE\left( {ch - cgv} \right)\)
-\(\Delta BDE = \Delta CDF\left( {g - c - g} \right)\)
b)\(\Delta ADE = \Delta ADF\left( {c - g - c} \right)\)
Lời giải chi tiết
a)
-Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD: Cạnh chung
\(\widehat {DAB} = \widehat {DAC} (gt)\)
\(\begin{array}{l}\widehat {ABD} = \widehat {ACD} = {90^0}\\ \Rightarrow \Delta ABD = \Delta ACD\left( {ch - gn} \right)\end{array}\)
-Xét \(\Delta ABF\) và \(\Delta ACE\) có:
\(\begin{array}{l}AB = AC\left( {do\,\Delta ABD = \Delta ACD} \right)\\\widehat A:Chung\\\widehat {ABF} = \widehat {ACE} = {90^0}\\ \Rightarrow \Delta ABF = \Delta ACE\left( {ch - cgv} \right)\end{array}\)
-Xét \(\Delta BDE\) và \(\Delta CDF\) có:
\(\begin{array}{l}\widehat {DBE} = \widehat {DCF} = {90^0}\\BD = CD\left( {do\,\Delta ABD = \Delta ACD} \right)\\\widehat {BDE} = \widehat {CDF}\left( {doi\,dinh} \right)\\ \Rightarrow \Delta BDE = \Delta CDF\left( {g - c - g} \right)\end{array}\)
b)
Ta có: \(\Delta ABF = \Delta ACE\left( {cmt} \right) \Rightarrow AF = AE\)
\(\Delta BDE = \Delta CDF\left( {cmt} \right) \Rightarrow \widehat E = \widehat F\)
Xét \(\Delta ADE\) và \(\Delta ADF\) có:
\(AD\): Cạnh chung
\(AE = AF (cmt)\)
\(\begin{array}{l}\widehat E = \widehat F\left( {cmt} \right)\\ \Rightarrow \Delta ADE = \Delta ADF\left( {c - g - c} \right)\end{array}\)
Chủ đề 10. Sinh trưởng và phát triển ở sinh vật
Đề kiểm tra học kì 2
Bài 10: Giữ gìn và phát huy truyền thống tốt đẹp của gia đình, dòng họ
Chương I. Nguyên tử. Sơ lược về bảng tuần hoàn các nguyên tố hóa học
Chương III. Tốc độ
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7