Đề bài
Biết \(\displaystyle \left| {{u_n} - 2} \right| \le {1 \over {{3^n}}}\). Có kết luận gì về giới hạn của dãy số \(\displaystyle \left( {{u_n}} \right)\) ?
Phương pháp giải - Xem chi tiết
Sử dụng kết quả:
Cho hai dãy số (un) và (vn). Chứng minh rằng nếu \(\lim {v_n} = 0\) và \(\left| {{u_n}} \right| \le {v_n}\) với mọi n thì \(\lim {u_n} = 0\)
Lời giải chi tiết
Ta có: \(\left| {{u_n} - 2} \right| \le \dfrac{1}{{{3^n}}}\) và \(\lim \dfrac{1}{{{3^n}}} = 0\) nên \(\lim ({u_n}-2) = 0\) hay \(\lim {u_n}= 2\).
Cách khác:
Ta có:
\(\lim \dfrac{1}{{{3^n}}} = 0\) \( \Rightarrow \dfrac{1}{{{3^n}}}\) nhỏ hơn một số dương bé tùy ý kể từ một số hạng nào đó trở đi.
Mà \(\left| {{u_n} - 2} \right| \le \dfrac{1}{{{3^n}}}\) nên \(\left| {{u_n} - 2} \right|\) nhỏ hơn một số dương bé tùy ý kể từ một số hạng nào đó trở đi.
\( \Rightarrow \lim \left( {{u_n} - 2} \right) = 0\) \( \Leftrightarrow \lim {u_n} = 2\)
Bài 11: Tiết 4: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Đông Nam Á - Tập bản đồ Địa lí 11
SBT Ngữ văn 11 - Kết nối tri thức tập 2
Unit 2: Get well
CHƯƠNG 4. SINH SẢN
SƠ KẾT LỊCH SỬ VIỆT NAM (1858 - 1918)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11