Giải Bài 91 trang 95 sách bài tập toán 7 - Cánh diều

Đề bài

Cho tam giác ABC vuông cân ở A có đường phân giác AM. Gọi E là điểm nằm giữa B và C. Vẽ BH và CK vuông góc với AE (H, K thuộc AE).

a) Chứng minh ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.

b) Tính số đo các góc của tam giác MKH.

 

 

Phương pháp giải - Xem chi tiết

- Chứng minh: M nằm trên đường trung trực của AB và AC và M nằm trên đường trung trực của HK nên ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.

- Sử dụng tổng ba góc trong một tam giác, hai tam giác bằng nhau và tam giác cân để tính số đo các góc của tam giác MKH.

 

 

Lời giải chi tiết

a) • Xét ∆ABM và ∆ACM có:

AB = AC (do ∆ABC cân tại A),

\(\widehat {BAM} = \widehat {CAM}\) (do AM là tia phân giác của góc BAC),

AM là cạnh chung

Do đó ∆ABM = ∆ACM (c.g.c)

Suy ra MB = MC (hai cạnh tương ứng).

• Ta có AM là tia phân giác của góc BAC nên:

\(\widehat {BAM} = \widehat {CAM} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}.90^\circ  = 45^\circ \)

Lại có \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = 180^\circ \) (tổng ba góc trong tam giác ABC)

Mà \(\widehat {BAC} = 90^\circ \) và \(\widehat {ABC} = \widehat {ACB}\) (do ∆ABC cân tại A)

Nên \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - 90^\circ }}{2} = 45^\circ \)

 Xét ∆ABM có \(\widehat {MBA} = \widehat {MAB}\) (cùng bằng 45°) nên tam giác ABM cân tại M.

Suy ra MA = MB

Mà MB = MC nên MA = MB = MC.

Do đó M nằm trên đường trung trực của AB và AC (1)

•Trong tam giác ABH vuông tại H có \({\hat B_1} + \widehat {BAH} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Nên \({\hat B_1} = 90^\circ  - \widehat {BAH}\)

Mà \({\hat A_1} = \widehat {BAC} - \widehat {BAH} = 90^\circ  - \widehat {BAH}\)

Suy ra \({\hat B_1} = {\hat A_1}\)

Xét ∆BAH và ∆ACK có:

\(\widehat {BHA} = \widehat {AKC}\left( { = 90^\circ } \right)\)

\({\hat B_1} = {\hat A_1}\) (chứng minh trên),

AB = AC (chứng minh ở câu a),

Do đó ∆ABH = ∆CAK (cạnh huyển – góc nhọn).

Suy ra AH = CK (hai cạnh tương ứng) và \(\widehat {BAH} = \widehat {ACK}\) (hai góc tương ứng).

Ta có \(\widehat {BAH} = \widehat {BAM} + \widehat {MAH} = 45^\circ  + \widehat {MAH}\)

Mà \(\widehat {BAH} = \widehat {ACK}\) (chứng minh trên)

Suy ra \(\widehat {MAH} = \widehat {MCK}\).

 

Xét ∆AMH và ∆CMK có:

AH = CK (chứng minh trên),

\(\widehat {MAH} = \widehat {MCK}\) (chứng minh trên),

AM = AM (chứng minh ở câu a)

Do đó ∆AMH = ∆CMK (c.g.c)

Suy ra MH = MK (hai cạnh tương ứng)

Hay M nằm trên đường trung trực của HK (2)

Từ (1) và (2) ta có điểm M nằm trên đường trung trực của AB, AC, HK.

Vậy ba đường trung trực tương ứng của các đoạn thẳng AB, AC, KH cùng đi qua điểm M.

b) • Ta có \(\widehat {AMH} = \widehat {CMK}\) (hai góc tương ứng của ∆AMH = ∆CMK).

Mà \(\widehat {HMK} = \widehat {HMC} + \widehat {CMK}\)

Do đó\(\widehat {HMK} = \widehat {HMC} + \widehat {AMH} = \widehat {AMC} = 90^\circ \) nên tam giác MHK vuông tại H.

• Ta có MH = MK nên tam giác MHK cân tại M.

Suy ra \(\widehat {MHK} = \widehat {MKH}\)

•Trong tam giác MHK vuông tại H có \(\widehat {MHK} + \widehat {MKH} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà \(\widehat {MHK} = \widehat {MKH}\) (chứng minh trên)

Suy ra\(\widehat {MHK} = \widehat {MKH} = \frac{{90^\circ }}{2} = 45^\circ \)

Vậy ∆MKH có \(\widehat {MHK} = \widehat {MKH} = 45^\circ ,\widehat {HMK} = 90^\circ \)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved