Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
Số dân của một thị trấn sau \(t\) năm kể từ năm \(1970\) được ước tính bởi công thức: \(f\left( t \right) = {{26t + 10} \over {t + 5}},f\left( t \right)\) được tính bằng nghìn người).
LG a
Tính số dân của thị trấn vào năm \(1980\) và năm \(1995\).
Lời giải chi tiết:
Vào năm \(1980\) thì \(t = 10\), số dân của thị trấn năm \(1980\) là:
\(f\left( {10} \right) = {{26.10 + 10} \over {10 + 5}} = 18\) nghìn người
Vào năm \(1995\) thì \(t=25\), số dân của thị trấn năm \(1995\) là:
\(f\left( {25} \right) = {{26.25 + 10} \over {25 + 5}} = 22\) nghìn người.
LG b
Xem \(f\) là một hàm số xác định trên nửa khoảng \(\left[ {0; + \infty } \right)\,\). Tính \(f'\) và xét chiều biến thiên của hàm số \(f\) trên nửa khoảng \(\left[ {0; + \infty } \right)\,\)
Lời giải chi tiết:
Ta có: \(f'\left( t \right) = {{120} \over {{{\left( {t + 5} \right)}^2}}} > 0\) với mọi \(t>0\)
Hàm số đồng biến trên \(\left[ {0; + \infty } \right)\).
LG c
Đạo hàm của hàm số \(f\) biểu thị tốc độ tăng dân số của thị trấn ( tính bằng nghìn người/năm).
• Tính tốc độ tăng dân số vào năm \(1990\) và năm \(2008\) của thị trấn.
• Vào năm nào thì tốc độ gia tăng dân số là \(0,125\) nghìn người/năm?
Lời giải chi tiết:
Tốc độ tăng dân số vào năm \(1990\) (ứng với t=1990-1970=20) là \(f'\left( {20} \right) = {{120} \over {{({20+5})^2}}} = 0,192\)
Tốc độ tăng dân số vào năm \(2008\) (ứng với t=2008-1970=38) là \(f'\left( {38} \right) = {{120} \over {{({38+5})^2}}} \approx 0,065\)
Ta có: \(f'(t)=0,125\) \(\Leftrightarrow {{120} \over {{{\left( {t + 5} \right)}^2}}} = 0,125\) \( \Leftrightarrow t + 5 = \sqrt {{{120} \over {0,125}}} \approx 31 \)
\(\Rightarrow t \approx 26\)
Vào năm \(1996\) tốc độ tăng dân số của thị trấn là \(0,125\).
PHẦN 2: LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
Chương 6. Lượng tử ánh sáng
Đề cương ôn tập học kì 1 - Vật lí 12
Bài 14. Sử dụng và bảo vệ tài nguyên thiên nhiên
Bài 28. Vấn đề tổ chức lãnh thổ công nghiệp