Đề bài
Tứ giác ABCD có \(\widehat {ABC} + \widehat {ADC} = {180^o}\). Chứng minh rằng các đường trung trực của AC, BD, AB cùng đi qua một điểm.
Phương pháp giải - Xem chi tiết
Gọi O là tâm đường tròn ngoại tiếp tứ giác ABCD. Sử dụng định lí: Điểm cách đều 2 đầu mút của 1 đoạn thẳng thuộc trung trực của đoạn thẳng đó.
Lời giải chi tiết
Xét tứ giác ABCD có \(\widehat {ABC} + \widehat {ADC} = {180^o} \Rightarrow \) Tứ giác ABCD là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).
Gọi O là tâm đường tròn ngoại tiếp tứ giác ABCD ta có :
\(OA = OC \Rightarrow O\) thuộc trung trực của AC.
\(OB = OD \Rightarrow O\) thuộc trung trực của BD.
\(OA = OB \Rightarrow O\) thuộc trung trực của AB.
Vậy các đường trung trực của AC, BD, AB cùng đi qua điểm O là tâm đường tròn ngoại tiếp tứ giác ABCD.
Đề thi vào 10 môn Văn Đà Nẵng
Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh
Bài 1
CHƯƠNG 3. SƠ LƯỢC VỀ BẢNG TUẦN HOÀN CÁC NGUYÊN TỐ HÓA HỌC
Đề thi vào 10 môn Văn Vĩnh Long