ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 17 trang 29 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40˚ bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số

\(d\left( t \right) = 3\sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in Z\) và \(0 < t \le 365.\) 

a. Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm ?

b. Vào ngày nào trong năm thì thành phố A có ít giờ có ánh sáng mặt trời nhất ?

c. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất ?

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm ?

Lời giải chi tiết:

Ta giải phương trình \(d(t) = 12\) với \(t \in\mathbb Z\) và \(0 < t ≤ 365\)

Ta có \(d(t) = 12 \)

\( \Leftrightarrow 3\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) + 12 = 12\)

\(\Leftrightarrow \sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] = 0 \)

\(\Leftrightarrow {\pi \over {182}}\left( {t - 80} \right) = k\pi \)

\( \Leftrightarrow t - 80 = 182k\)

\( \Leftrightarrow t = 182k + 80\,\left( {\,k \in\mathbb Z} \right)\)

Ta lại có  

\(0 < 182k + 80 \le 365\)

\(\Leftrightarrow - {{80} \over {182}} < k \le {{285} \over {182}}\)

\(\Leftrightarrow \left[ {\matrix{{k = 0} \cr {k = 1} \cr} } \right.\)

Vậy thành phố \(A\) có đúng \(12\) giờ ánh sáng mặt trời vào ngày thứ \(80\) (ứng với \(k = 0\)) và ngày thứ \(262\) (ứng với \(k = 1\)) trong năm.

LG b

LG b

Vào ngày nào trong năm thì thành phố A có ít giờ có ánh sáng mặt trời nhất ?

Lời giải chi tiết:

Do \(\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) \ge  - 1\) \( \Rightarrow d\left( t \right) \le 3.\left( { - 1} \right) + 12 = 9\) với mọi \(x\)

Vậy thành phố \(A\) có ít giờ ánh sáng mặt trời nhất khi và chỉ khi :

\(\sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] = - 1\) \(\text{ với }\) \(\,t \in \mathbb Z\,\text { và }\,0 < t \le 365\) 

Phương trình đó cho ta  

\({\pi \over {182}}\left( {t - 80} \right) = - {\pi \over 2} + k2\pi \) 

\( \Leftrightarrow t - 80 = 182\left( { - \frac{1}{2} + 2k} \right)\)

\( \Leftrightarrow t = 364k - 11\,\left( {\,k \in\mathbb Z} \right)\)

Mặt khác,\(0 < 364k - 11 \le 365 \) \(\Leftrightarrow {{11} \over {364}} < k \le {{376} \over {364}} \Leftrightarrow k = 1\) (do \(k\) nguyên)

Vậy thành phố \(A\) có ít giờ ánh sáng mặt trời nhất (\(9\) giờ) khi \(t = 353\), tức là vào ngày thứ \(353\) trong năm.

LG c

LG c

Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất ?

Lời giải chi tiết:

Vì \(\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) \le 1 \) \(\Rightarrow d\left( t \right) \le 3.1 + 12 = 15\) nên d(t) đạt GTLN khi \(\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) = 1 \)

Ta phải giải phương trình :

\(\eqalign{
& \sin \left[ {{\pi \over {182}}\left( {t - 80} \right)} \right] = 1\cr &\text{ với }\,t \in\mathbb Z\,\text{ và }\,0 < t \le 365 \cr 
& \Leftrightarrow {\pi \over {182}}\left( {t - 80} \right) = {\pi \over 2} + k2\pi \cr&\Leftrightarrow t = 364k + 171 \cr 
& 0 < 364k + 171 \le 365 \cr&\Leftrightarrow - {{171} \over {364}} < k \le {{194} \over {364}} \Leftrightarrow k = 0 \cr} \) 

Vậy thành phố \(A\) có nhiều giờ có ánh sáng mặt trời nhất (\(15\) giờ) vào ngày thứ \(171\) trong năm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved