Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là hình bình hành, mặt bên SAB là tam giác vuông tại A. Với điểm M bất kì thuộc cạnh AD (M khác A và D), xét mặt phẳng (α) đi qua điểm M và song song với SA, CD.
a) Thiết diệm của hình chóp S.ABCD khi cắt bởi mp(α) là hình gì?
b) Tính diện tích thiết diện theo a và b; biết AB = a, SA = b, M là trung điểm của AD.
Lời giải chi tiết
a) Dễ thấy thiết diện là tứ giác MNPQ trong đó MN // QP // CD, MQ // SA.
Do SA ⊥ AB, AB //MN, MQ // SA nên thiết diện MNPQ là hình thang vuông tại M.
b) \({S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).MQ\)
Do M là trung điểm của AD nên:
\(\eqalign{ & MQ = {1 \over 2}SA = {1 \over 2}b \cr & PQ = {1 \over 2}CD = {1 \over 2}a \cr & MN = a \cr} \)
Vậy \({S_{MNPQ}} = {1 \over 2}\left( {a + {a \over 2}} \right).{b \over 2} = {{3{\rm{a}}b} \over 8}\).
Unit 8: Cities of the future
Bài 11: Cấu tạo hóa học của hợp chất hữu cơ
Phần hai: Giáo dục pháp luật
Chuyên đề 2. Một số vấn đề về du lịch thế giới
PHẦN HAI. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11