Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ABCD có BC = AD = a, AC = BD = b, AB = CD = c. Đặt α là góc giữa BC và AD; β là góc giữa AC và BD; γ là góc giữa AB và CD. Chứng minh rằng trong ba số hạng \({a^2}\cos \alpha ,{b^2}\cos \beta ,{c^2}\cos \gamma \) có một số hạng bằng tổng hai số hạng còn lại.
Lời giải chi tiết
Ta có:
\(\cos \left( {\overrightarrow {BC} ,\overrightarrow {DA} } \right) = {{2{c^2} - 2{b^2}} \over {2{a^2}}} = {{{c^2} - {b^2}} \over {{a^2}}}\).
Vậy nếu góc giữa BC và AD bằng α thì:
\(\cos \alpha = {{\left| {{c^2} - {b^2}} \right|} \over {{a^2}}}\) hay \({a^2}\cos \alpha = \left| {{c^2} - {b^2}} \right|\).
Tương tự như trên, nếu gọi β là góc giữa AC và BD thì:
\({b^2}\cos \beta = \left| {{a^2} - {c^2}} \right|\)
và γ là góc giữa AB và CD thì
\({c^2}\cos \gamma = \left| {{b^2} - {a^2}} \right|\).
Với a, b, c lần lượt là dộ dài của BC, CA, AB, không giảm tính tổng quát có thể coi a ≥ b ≥ c. Khi đó:
\(\eqalign{ & {a^2}\cos \alpha = {b^2} - {c^2} \cr & {b^2}\cos \beta = {a^2} - {c^2} \cr & {c^2}\cos \gamma = {a^2} - {b^2} \cr} \).
Từ đó, trong trường hợp này ta có \({b^2}\cos \beta = {a^2}\cos \alpha + {c^2}\cos \gamma \).
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương II - Hóa học 11
CHƯƠNG 1. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Chủ đề 6. Động cơ đốt trong
Unit 1: Food for Life
B. ĐỊA LÍ KHU VỰC VÀ QUỐC GIA
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11