Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ABCD có tất cả các cạnh bằng nhau. Gọi M và N lần lượt là trung điểm của AB và CD. Lấy các điểm I, J, K lần lượt thuộc các đường thẳng BC, AC, AD sao cho \(\overrightarrow {IB} = k\overrightarrow {IC} ,\overrightarrow {J{\rm{A}}} = k\overrightarrow {JC} ,\overrightarrow {K{\rm{A}}} = k\overrightarrow {K{\rm{D}}} \) trong đó k là số khác 0 cho trước. Chứng minh rằng:
a) MN ⊥ IJ và MN ⊥IK
b) AB ⊥ CD
Lời giải chi tiết
a) Từ
\(\eqalign{ & \overrightarrow {IB} = k\overrightarrow {IC} \cr & \overrightarrow {J{\rm{A}}} = k\overrightarrow {JC} \cr} \)
ta có IJ // AB.
Tương tự, ta có IK // CD.
Do các cạnh của tứ diện ABCD bằng nhau và N là trung điểm của CD nên NA = NB.
Mặt khác MA = MB do đó MN ⊥ AB, suy ra MN ⊥ IJ.
Tương tự như trên, ta có MN ⊥ CD và IK // CD nên MN ⊥ JK.
b) Ta có \(\overrightarrow {AB} = \overrightarrow {AN} + \overrightarrow {NB} \).
Từ giả thiết, ta có:
\(AN \bot C{\rm{D}}\) tức là \(\overrightarrow {AN} .\overrightarrow {C{\rm{D}}} = 0\);
\(BN \bot C{\rm{D}}\) tức là \(\overrightarrow {BN} .\overrightarrow {C{\rm{D}}} = 0\).
Vậy \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = \left( {\overrightarrow {AN} + \overrightarrow {NB} } \right).\overrightarrow {C{\rm{D}}} = 0\) tức là \(AB \bot C{\rm{D}}\) .
Unit 1: Eat, drink and be healthy
Bài 8: Tiết 3: Thực hành: Tìm hiểu sự thay đổi GDP và phân bố nông nghiệp của Liên bang Nga - Tập bản đồ Địa lí 11
Bài 9: Tiết 2: Các ngành kinh tế và các vùng kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Phần 1. Vẽ kĩ thuật
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11