Cho hyperbol (H) xác định bởi phương trình
LG a
Tìm phương trình tiếp tuyến (T) của (H) tại tiếp điểm A có hoành độ a (với a ≠ 0)
Lời giải chi tiết:
Với mọi x ≠ 0, ta có :
Phương trình tiếp tuyến (T) tại điểm
LG b
Giả sử (T) cắt trục Ox tại điểm I và cắt trục Oy tại điểm J. Chứng minh rằng A là trung điểm của đoạn thẳng IJ. Từ đó suy ra cách vẽ tiếp tuyến (T).
Lời giải chi tiết:
Tìm các giao điểm của (T) với hai trục tọa độ:
Cho x=0 thì
Cho y=0 thì x=2a.
Do đó
Ta thấy:
Nên
Từ đó suy ra cách vẽ tiếp tuyến (T) chính là đường thẳng IJ.
Ta chỉ cần lấy hai điểm I, J có tọa độ như trên và nối lại sẽ được tiếp tuyến cần tìm.
LG c
Chứng minh rằng diện tích tam giác OIJ không phụ thuộc vào vị trí của điểm A.
Lời giải chi tiết:
Ta có:
Diện tích tam giác OIJ là :
Vì S không phụ thuộc vào a nên diện tích tam giác OIJ không phụ thuộc vào vị trí của điểm A ϵ (H)
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chương IV. Sản xuất cơ khí
Unit 0: Introduction
Bài 3. Một số vấn đề mang tính chất toàn cầu - Tập bản đồ Địa lí 11
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc Đông Nam Á
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11