ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 25 trang 32 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Một chiếc guồng nước có dạng hình tròn bán kính \(2,5m\) ;trục của nó đặt cách mặt nước \(2m\) (h.1.24). Khi guồng quay đều, khoảng cách \(h\) (mét) từ một chiếc gầu gắntại điểm \(A\) của guồng đến mặt nước được tính theo công thức \(h = |y|\), trong đó

\(y = 2 + 2,5\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right]\)

Với \(x\) là thời gian quay guồng (\(x ≥ 0\)), tính bằng phút ; ta quy ước rằng \(y > 0\) khi gầu ở bên trên mặt nước và \(y < 0\) khi gầu ở dưới nước (xem bài đọc thêm về dao động điều hòa trang 15). Hỏi :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

Khi nào thì chiếc gầu ở vị trí thấp nhất ?

Lời giải chi tiết:

Ta có: \(\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] \ge  - 1\) \( \Rightarrow y \ge 2 + 2,5.\left( { - 1} \right) =  - 0,5\)

Chiếc gầu ở vị trí thấp nhất khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = - 1.\) Ta có :

\(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = - 1 \)

\(\Leftrightarrow 2\pi \left( {x - {1 \over 4}} \right) = - {\pi \over 2} + k2\pi \)

\( \Leftrightarrow x - \frac{1}{4} =  - \frac{1}{4} + k\)

\(\Leftrightarrow x = k\,\left( {\,k \in\mathbb Z} \right)\) 

Điều đó chứng tỏ rằng chiếc gầu ở vị trí thấp nhất tại các thời điểm 0 phút ; 1 phút ; 2 phút ; 3 phút…

LG b

LG b

Khi nào thì chiếc gầu ở vị trí cao nhất ?

Lời giải chi tiết:

Ta có: \(\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] \le   1\) \( \Rightarrow y \le 2 + 2,5.1 =  4,5\)

Chiếc gầu ở vị trí cao nhất khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 1.\) Ta có :

\(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 1\)

\(\Leftrightarrow 2\pi \left( {x - {1 \over 4}} \right) = {\pi \over 2} + k2\pi\)

\( \Leftrightarrow x - \frac{1}{4} = \frac{1}{4} + k\)

\(\Leftrightarrow x = {1 \over 2} + k\,\left( {\,k \in N} \right)\) 

Điều đó chứng tỏ chiếc gàu ở vị trí cao nhất tại các thời điểm 0,5 phút; 1,5 phút ; 2,5 phút ; 3,5 phút …

LG c

LG c

Chiếc gầu cách mặt nước \(2m\) lần đầu tiên khi nào ?

Lời giải chi tiết:

Chiếc gàu cách mặt nước 2 mét khi:

\(\begin{array}{l}
2 + 2,5\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] = 2\\
\Leftrightarrow 2,5\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] = 0\\
\Leftrightarrow \sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] = 0\\
\Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = k\pi \\
\Leftrightarrow x - \frac{1}{4} = \frac{k}{2}\\
\Leftrightarrow x = \frac{k}{2} + \frac{1}{4}
\end{array}\)

Nghĩa là tại các thời điểm \(x = {1 \over 4} + {1 \over 2}k\) (phút) thì chiếc gầu cách mặt nước 2m;

Do đó lần đầu tiên nó cách mặt nước 2 mét khi quay được \({1 \over 4}\) phút (ứng với \(k = 0\)). 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved