Câu 26 trang 119 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SC, SB = SD. Gọi O là  giao điểm của AC và BD.

a) Chứng minh rằng SO ⊥ mp(ABCD).

b) Gọi d là giao tuyến của mp(SAB) và  mp(SCD), d1 là giao tuyến của mp(SBC) và mp(SAD). Chứng minh rằng SO ⊥ mp(d, d1).

Lời giải chi tiết

 

a) Vì ABCD là hình bình hành và \(O = AC \cap B{\rm{D}}\) nên OA = OC và  OB = OD. Mặt khác SA = SC nên SO ⊥ AC và SB = SD nên SO ⊥BD.

Vậy SO ⊥ mp(ABCD)

b) Vì AB // CD mà \(d = mp\left( {SAB} \right) \cap mp\left( {SC{\rm{D}}} \right)\) nên d //AB và d qua S.

Tương tự d1 //AD và d1 qua S.

Do \(SO \bot mp\left( {ABC{\rm{D}}} \right)\) nên \(SO \bot d,SO \bot {d_1}\) .

Vậy \(SO \bot mp\left( {d,{d_1}} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved