ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 29 trang 211 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

Tìm đạo hàm của các hàm số sau :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

LG a

LG a

\(y = 5\sin x - 3\cos x\)

Phương pháp giải:

Sử dụng các công thức (sinx)'=cosx và (cosx)'=-sinx.

Lời giải chi tiết:

\(y' = 5\cos x + 3\sin x\)

LG b

LG b

 \(y = \sin \left( {{x^2} - 3x + 2} \right)\)

Phương pháp giải:

Sử dụng công thức (sinu)'=u'cosu

Lời giải chi tiết:

\(y'=\left[ {\sin \left( {{x^2} - 3x + 2} \right)} \right]' \) \(= \left( {{x^2} - 3x + 2} \right)'\cos \left( {{x^2} - 3x + 2} \right)\) \(= \left( {2x - 3} \right)\cos \left( {{x^2} - 3x + 2} \right)\)

LG c

LG c

 \(y = \cos \sqrt {2x + 1} \)

Phương pháp giải:

Sử dụng công thức (cosu)'=-u'sinu

Lời giải chi tiết:

\(y'  =  - \left( {\sqrt {2x + 1} } \right)'\sin \sqrt {2x + 1}\) \(  =  - \frac{{\left( {2x + 1} \right)'}}{{2\sqrt {2x + 1} }}\sin \sqrt {2x + 1} \) \(= -{2 \over {2\sqrt {2x + 1} }}\left( {  \sin \sqrt {2x + 1} } \right)\) \( = {{ - \sin \sqrt {2x + 1} } \over {\sqrt {2x + 1} }}\)

LG d

LG d

\(y = 2\sin 3x\cos 5x\)

Phương pháp giải:

Biến đổi tích thành tổng và tính đạo hàm.

Lời giải chi tiết:

\(y  = 2.\frac{1}{2}\left[ {\sin \left( {3x + 5x} \right) + \sin \left( {3x - 5x} \right)} \right] \) \(= \sin 8x + \sin \left( { - 2x} \right)\) \(= \sin 8x - \sin 2x \) \(\Rightarrow y' = \left( {8x} \right)'\cos 8x - \left( {2x} \right)'\cos 2x\) \(= 8\cos 8x - 2\cos 2x\)

LG e

LG e

\(y = {{\sin x + \cos x} \over {\sin x - \cos x}}\)

Phương pháp giải:

Sử dụng công thức đạo hàm của một thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

LG f

LG f

\(y = \sqrt {\cos 2x} \)

Phương pháp giải:

Sử dụng công thức \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

Lời giải chi tiết:

\(y' = \frac{{\left( {\cos 2x} \right)'}}{{2\sqrt {\cos 2x} }} = \frac{{\left( {2x} \right)'.\left( { - \sin 2x} \right)}}{{2\sqrt {\cos 2x} }}\) \(= {{ - 2\sin 2x} \over {2\sqrt {\cos 2x} }} = {-{\sin 2x} \over {\sqrt {\cos 2x} }}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved