ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 31 trang 41 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Một vật nặng treo bởi một chiếc lò xo, chuyển động lên xuống qua vị trí cân bằng.

Khoảng cách \(h\) từ vật đó đến vị trí cân bằng ở thời điểm \(t\) giây được tính theo công thức \(h = |d|\) trong đó

\(d = 5\sin6t – 4\cos6t\),

với \(d\) được tính bằng xentimet, ta quy ước rằng \(d > 0\) khi vật ở phía trên vị trí cân bằng, \(d < 0\) khi vật ở phía dưới vị trí cân bằng. Hỏi :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Ở thời điểm nào trong 1 giây đầu tiên, vật ở vị trí cân bằng ?

Lời giải chi tiết:

Ta có:\(d=5\sin 6t - 4cos6t\) \( = \sqrt {41} \left( {{5 \over {\sqrt {41} }}\sin 6t - {4 \over {\sqrt {41} }}\cos 6t} \right) \) \(= \sqrt {41} \sin \left( {6t - \alpha } \right)\)

trong đó số \(α\) được chọn sao cho \(\cos \alpha = {5 \over {\sqrt {41} }}\,\text{ và }\,\sin \alpha = {4 \over {\sqrt {41} .}}\)

Sử dụng bảng số hoặc máy tính bỏ túi, ta chọn được \(α ≈ 0,675\).

Vật ở vị trí cân bằng khi \(d = 0\), nghĩa là \(\sin(6t – α) = 0\)

\( \Leftrightarrow t = {\alpha \over 6} + k{\pi \over 6}\) (với \(k \in\mathbb Z\))

Ta cần tìm \(k\) nguyên dương sao cho \(0 ≤ t ≤ 1\)

\(0 ≤ t ≤ 1\) \( ⇔  0 \le {\alpha \over 6} + k{\pi \over 6} \le 1 \) \(\Leftrightarrow - {\alpha \over \pi } \le k \le {{6 - \alpha } \over \pi }\)

Với \(α ≈ 0,675\), ta thu được \(-0,215 < k < 1,7\), nghĩa là \(k\in \{0;1\}\).

Vậy trong khoảng 1 giây đầu tiên, có hai thời điểm vật ở vị trí cân bằng là :

\(t \approx {\alpha \over 6} \approx 0,11\) (giây) và \(t = {\alpha \over 6} + {\pi \over 6} \approx 0,64\) (giây)

LG b

LG b

Ở thời điểm nào trong 1 giây đầu tiên, vật ở xa vị trí cân bằng nhất ?

(Tính chính xác đến \({1 \over {100}}\) giây).

Lời giải chi tiết:

Vật ở xa vị trí cân bằng nhất khi và chỉ khi \(|d|\) nhận giá trị lớn nhất.

Điều đó xảy ra nếu \(\sin(6t – α) = ± 1\). Ta có :

\(\sin \left( {6t - \alpha } \right) = \pm 1 \)

\(\Leftrightarrow \cos \left( {6t - \alpha } \right) = 0 \)

\(\Leftrightarrow t= {\alpha \over 6} + {\pi \over {12}} + k{\pi \over 6}\) 

Ta tìm k nguyên dương sao cho \(0 ≤ t ≤ 1\)

\(\eqalign{
& 0 \le t \le 1 \Leftrightarrow 0 \le {\alpha \over 6} + {\pi \over {12}} + k{\pi \over 6} \le 1 \cr 
& \Leftrightarrow - {\alpha \over \pi } - {1 \over 2} \le k \le {{6 - \alpha } \over \pi } - {1 \over 2} \cr} \)

Với \(α ≈ 0,675\), ta thu được \(-0,715 < k < 1,2\); nghĩa là \(k \in {\rm{\{ }}0;1\} \). Vậy trong khoảng 1 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất là :

\(t = {\alpha \over 6} + {\pi \over {12}} \approx 0,37\,\left( {s} \right)\) và \(t = {\alpha \over 6} + {\pi \over {12}} + {\pi \over 6} \approx 0,90\,\left( \text{s} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved