ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Đề bài

Cho các hàm số \(f(x) = \sin x,\) \( g(x) = \cos x,\) \( h(x) = \tan x\) và các khoảng

\({J_1} = \left( {\pi ;{{3\pi } \over 2}} \right);{J_2} = \left( { - {\pi \over 4};{\pi \over 4}} \right);\) \({J_3} = \left( {{{31\pi } \over 4};{{33\pi } \over 4}} \right);{J_4} = \left( { - {{452\pi } \over 3};{{601\pi } \over 4}} \right)\)

Hỏi hàm số nào trong ba hàm số trên đồng biến trên khoảng \(J_1\) ? Trên khoảng \(J_2\) ? Trên khoảng \(J_3\) ? Trên khoảng \(J_4\) ? (Trả lời bằng cách lập bảng).

Phương pháp giải - Xem chi tiết

Sử dụng lí thuyết:

Hàm số \(y = \sin x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\)

Hàm số \(y = \cos x\) đồng biến trên \(\left( { - \pi  + k2\pi ;k2\pi } \right)\) và nghịch biến trên \(\left( {k2\pi ;\pi  + k2\pi } \right)\)

Hàm số \(y = \tan x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).

Lời giải chi tiết

Ta có:

+) \({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) nên hàm số \(y = \sin x\) nghịch biến trên \({J_1}\), hàm số \(y = \tan x\) đồng biến trên \({J_1}\).

\({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\pi ;2\pi } \right)\) nên hàm số \(y = \cos x\) đồng biến trên \({J_1}\)

+) \({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right) \subset \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_2}\), hàm số \(y = \tan x\) đồng biến trên \({J_2}\).

\({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\)\( = \left( { - \frac{\pi }{4};0} \right) \cup \left[ {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) chỉ đồng biến trên \(\left( {\frac{\pi }{4};0} \right)\) và nghịch biến trên \(\left( {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) không đồng biến trên \({J_2}\)

+) \({J_3} = \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} \right)\) \( = \left( {8\pi  - \frac{\pi }{4};8\pi  + \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_3}\), hàm số \(y = \tan x\) đồng biến trên \({J_3}\), hàm số \(y = \cos x\) không đồng biến trên \({J_3}\)

+) \({J_4} = \left( { - \frac{{452\pi }}{3};\frac{{601\pi }}{4}} \right)\) \( = \left( { - 150\pi  - \frac{{2\pi }}{3}; - 150\pi  - \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\), \(y = \tan x\) không đồng biến trên \({J_4}\), hàm số \(y = \cos x\) đồng biến trên \({J_4}\)

Ta có bảng sau, trong đó dấu “ +” có nghĩa “đồng biến”, dấu “0” có nghĩa “không đồng biến” :

Hàm số

J1

J2

J3

J4

\(f(x) = \sin x\)

0

+

+

0

\(g(x) = \cos x\)

+

0

0

+

\(h(x) = \tan x\)

+

+

+

0

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved