Đề bài
Chứng minh rằng hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với
\({u_n} = {{1 + \cos {n^2}} \over {2n + 1}};\,\,{v_n} = {{1 + \sin 2n} \over {{n^2} + n}}\)
Có giới hạn 0
Lời giải chi tiết
\(0 \le {{1 + \cos {n^2}} \over {2n + 1}} \le {2 \over {2n + 1}} \le {1 \over n}\)
Do đó \(\lim {u_n} = 0\)
\(0 \le {v_n} \le {{n + 1} \over {n\left( {n + 1} \right)}} = {1 \over n}\)
Do đó \(\lim {v_n} = 0\)
Chủ đề 4. Dòng điện. Mạch điện
Chủ đề 8: Một số quyền dân chủ cơ bản của công dân
Chương VI. Bảo vệ môi trường
Chủ đề 2: Kĩ thuật dừng bóng và kĩ thuật đánh đầu
Unit 3: Global warming and Ecological systems
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11