Đề bài
Cho hình chữ nhật ABCD với tâm O, AB = a, BC = 2a. Lấy điểm S trong không gian sao cho SO vuông góc với mặt phẳng (ABCD), đặt SO = h. Gọi M và N lần lượt là trung điểm của AB và CD.
a) Tính góc giữa mp(SMN) với các mặt phẳng (SAB) và (SCD). Tìm hệ thức liên hệ giữa h và a để mp(SMN) vuông góc với các mặt phẳng (SAB), (SCD).
b) Tính góc giữa hai mặt phẳng (SAB) và (SCD). Tính h theo a để hai mặt phẳng đó vuông góc.
Lời giải chi tiết
a) Vì
Tương tự, góc giữa (SMN) và (SCD) cũng bằng 90°.
Như vậy với AB = a, BC = 2a, h tùy ý thì (SMN) vuông góc cả với hai mặt phẳng (SAB) và (SCD).
b) Dễ thấy
Như vậy
Tính
Ta có
tức là
Vậy góc giữa hai mặt phẳng (SAB) và (SCD) là α mà
Từ đó hai mặt phẳng (SAB) và (SCD) vuông góc khi và chỉ khi h = a.
Bài 1: Mở đầu về cân bằng hóa học
Unit 1: Generations
Chương 1. Cân bằng hóa học
Phần 3. Động cơ đốt trong
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11