Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Tính góc tạo bởi hai đường thẳng AC’ và A’B.
b) Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. Chứng minh rằng AC’ vuông góc với mp(MNP).
Lời giải chi tiết
a) Ta có \(C'B' \bot \left( {ABB'A'} \right),B'A \bot A'B\) nên \(A'B \bot AC'\) (định lí ba đường vuông góc).
Vậy góc giữa AC’ và A’B bằng 90°.
b) Ta có
\(\eqalign{ & N{P^2} = N{C^2} + C{{\rm{D}}^2} + D{P^2} \cr & = {{{a^2}} \over 4} + {a^2} + {{{a^2}} \over 4} = {{3{{\rm{a}}^2}} \over 2} \cr} \)
Tương tự ta cũng có \(M{N^2} = M{P^2} = {{3{{\rm{a}}^2}} \over 2}\)
Vậy MNP là tam giác đều.
Mặt khác:
\(\eqalign{ & A{N^2} = A{P^2} = A{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr & C'{N^2} + C'{P^2} = C'{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr} \)
Từ đó \(AC' \bot \left( {MNP} \right)\).
Bài 5. Tiết 3: Một số vấn đề của khu vực Tây Nam Á và khu vực Trung Á - Tập bản đồ Địa lí 11
Review Unit 2
Chương I. Dao động
Chương 5. Tệp và thao tác với tệp
Unit 2: Generation gap
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11