Đề bài
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Xét tứ diện AB’CD’. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mp(ABC). Tính diện tích thiết diện thu được. Hãy xét kết quả của toán khi ABCD.A’B’C’D’ là hình hộp chữ nhật với ba kích thước là a, b, c.
Lời giải chi tiết
Vì hình ABCD.A’B’C’D’ là hình lập phương nên AB’CD’ là tứ diện đều có cạnh \(a\sqrt 2 \) (a là cạnh của hình lập phương). Dễ thấy thiết diện là tứ giác MNPQ, trong đó M, N, P, Q lần lượt là trung điểm của các cạnh AB’, AD’, D’C, B’C. Do AB’CD’ là tứ diện đều nên \(B'D' \bot AC\).
Vậy tứ giác MNPQ là hình vuông cạnh bằng \({{a\sqrt 2 } \over 2}\). Từ đó \({S_{MNPQ}} = {{{a^2}} \over 2}\)
Chú ý. Có thể chiếu tứ giác MNPQ xuống mặt phẳng (ABCD) theo phương chiếu A’A được tứ giác \({M_1}{N_1}{P_1}{Q_1}\) trong đó \({M_1},{N_1},{P_1},{Q_1}\) lần lượt là trung điểm của AB, AD, CD, BC và
\({S_{MNPQ}} = {S_{{M_1}{N_1}{P_1}{Q_1}}} = {1 \over 2}{S_{ABC{\rm{D}}}} = {{{a^2}} \over 2}\).
Nếu hình lập phương ABCD.A’B’C’D’ được thay bởi hình hộp chữ nhật với \(AB = a,BC = b,AA' = c\) thì thiết diện thu được vẫn là tứ giác MNPQ và MNPQ là hình thoi có độ dài hai đường chéo MP và NQ lần lượt là b, a. Do đó:
\({S_{MNPQ}} = {{ab} \over 2}\).
Chú ý. Thực hiện như phần chú ý ở trên thì
\({S_{MNPQ}} = {S_{{M_1}{N_1}{P_1}{Q_1}}} = {1 \over 2}{S_{ABC{\rm{D}}}} = {{ab} \over 2}\).
Dương phụ hành - Cao Bá Quát
Unit 12: Celebrations
Vocabulary Expansion
Chương 6. Hợp chất carbonyl (Aldehyde - Ketone - Carboxylic acid
Tải 10 đề kiểm tra 1 tiết - Chương 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11