Câu 8 trang 222 Sách bài tập Hình học 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho đường tròn (O; R) và hai điểm A, B cố định sao cho đường thẳng AB không cắt đường tròn. Một điểm M thay đổi trên đường tròn.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm quỹ tích điểm N sao cho ABMN là hình bình hành.

Lời giải chi tiết:

 Vì tứ giác ABMN là hình bình hành nên \(\overrightarrow {MN}  = \overrightarrow {BA} \). Vậy phép tịnh tiến theo vectơ \(\overrightarrow {BA} \) biến điểm M thành điểm N. Suy ra quỹ tích các điểm N là ảnh của đường tròn (O;R) qua phép tịnh tiến đó.

LG b

Tìm quỹ tích trọng tâm G của tam giác ABM.

Lời giải chi tiết:

Gọi I là trung điểm AB thì \(\overrightarrow {IG}  = {1 \over 3}\overrightarrow {IM} \) . Vậy phép vị tự \({V_{\left( {I;{1 \over 3}} \right)}}\) biến điểm M thành điểm G. Từ đó suy ra quỹ tích các điểm G là đường tròn ảnh của đường tròn (O;R) qua phép vị tự nói trên.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved