Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Cho đường tròn (O; R) và hai điểm A, B cố định sao cho đường thẳng AB không cắt đường tròn. Một điểm M thay đổi trên đường tròn.
LG a
Tìm quỹ tích điểm N sao cho ABMN là hình bình hành.
Lời giải chi tiết:
Vì tứ giác ABMN là hình bình hành nên \(\overrightarrow {MN} = \overrightarrow {BA} \). Vậy phép tịnh tiến theo vectơ \(\overrightarrow {BA} \) biến điểm M thành điểm N. Suy ra quỹ tích các điểm N là ảnh của đường tròn (O;R) qua phép tịnh tiến đó.
LG b
Tìm quỹ tích trọng tâm G của tam giác ABM.
Lời giải chi tiết:
Gọi I là trung điểm AB thì \(\overrightarrow {IG} = {1 \over 3}\overrightarrow {IM} \) . Vậy phép vị tự \({V_{\left( {I;{1 \over 3}} \right)}}\) biến điểm M thành điểm G. Từ đó suy ra quỹ tích các điểm G là đường tròn ảnh của đường tròn (O;R) qua phép vị tự nói trên.
Chuyên đề 2. Một số vấn đề về pháp luật lao động
Phần hai. Địa lí khu vực và quốc gia
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Chuyên đề 1. Một số vấn đề về khu vực Đông Nam Á
Unit 3: Social issues
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11