Bài 13 trang 70

Đề bài

Cho bốn điểm A, B, C và D như Hình 2. Biết rằng \(\widehat {BEC} = {40^0};\widehat {EBA} = {110^0};AB = DC\). Chứng minh rằng:

a)Tam giác BEC cân tại đỉnh E.

b)EA = ED.

Phương pháp giải - Xem chi tiết

a)Chứng minh \(\widehat {EBC} = \widehat {ECB} = {70^0}\)

b)Chứng minh: \(\Delta ABE = \Delta DCE\left( {c - g - c} \right)\).

Lời giải chi tiết

a)

Ta có: \(\widehat {ABE} + \widehat {EBC} = {180^0}\)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow {110^0} + \widehat {EBC} = {180^0}\\ \Rightarrow \widehat {EBC} = {180^0} - {110^0}\\ \Rightarrow \widehat {EBC} = {70^0}\end{array}\)

Xét tam giác EBC: \(\widehat E + \widehat B + \widehat C = {180^0}\) (Tổng ba góc trong tam giác)

\(\begin{array}{l} \Rightarrow {40^0} + {70^0} + \widehat C = {180^0}\\ \Rightarrow \widehat C = {180^0} - {110^0}\\ \Rightarrow \widehat C = {70^0}\\ \Rightarrow \widehat {EBC} = \widehat {ECB} = {70^0}\end{array}\)

\( \Rightarrow \Delta EBC\) cân tại E

\( \Rightarrow EB = EC\)

b)CM: EA = ED

Ta có:

\(\begin{array}{l}\widehat {ECD} = {180^0} - \widehat {ECB} = {180^0} - {70^0} = {110^0}\\ \Rightarrow \widehat {ABE} = \widehat {DCE}\end{array}\)

Xét \(\Delta ABE\)và có:

\(\begin{array}{l}BE = CE\left( {cmt} \right)\\\widehat {ABE} = \widehat {DCE}\left( {cmt} \right)\\AB = DC\left( {gt} \right)\\ \Rightarrow \Delta ABE = \Delta DCE\left( {c - g - c} \right)\\ \Rightarrow AE = DE\end{array}\) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved