Bài 2.19 trang 61 SBT hình học 12

Đề bài

Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì hình tứ diện đó có tổng các cặp cạnh đối diện bằng nhau.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất tiếp tuyến cắt nhau của mặt cầu.

Lời giải chi tiết

 

 

 

Giả sử có một mặt cầu tiếp xúc với các cạnh AB, AC, AD, BC, CD,  BD của tứ diện ABCD lần lượt tại M, N, P, Q, R, S. Khi đó AM, AN, AP là các tiếp tuyến cùng xuất phát từ A nên AM = AN = AP.

Lập luận tương tự ta có: BM = BQ = BS ; CQ = CR = CN ; DR = DS = DP

Vậy  AB + CD = AM + MB + CR + RD = AN + BS + CN + DS

= AN + NC + BS + SD = AC + BD

Bằng lí luận tương tự ta chứng minh được AB + CD = AC + BD = AD + BC

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận

Bài giải cùng chuyên mục

Bài 2.13 trang 60 SBT hình học 12 Giải bài 2.13 trang 60 sách bài tập hình học 12. Trong mặt phẳng cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ta lấy một điểm S tùy ý, dựng mặt phẳng đi qua A và vuông góc với đường thẳng SC. Mặt phẳng cắt SB, SC, SD lần lượt tại B’, C’, D’.
Bài 2.14 trang 60 SBT hình học 12 Giải bài 2.14 trang 60 sách bài tập hình học 12. Hình chóp tam giác S.ABC có SA = SB = SC = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó.
Bài 2.15 trang 60 SBT hình học 12 Giải bài 2.15 trang 60 SBT hình học 12. Xác định tâm O và bán kính r của mặt cầu đi qua 5 điểm A, A’, M, M’, M1. Tính diện tích của mặt cầu tâm O nói trên theo a, x = A’M’
Bài 2.20 trang 61 SBT hình học 12 Giải bài 2.20 trang 61 sách bài tập hình học 12. Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD.
Bài 2.23 trang 61 SBT hình học 12 Giải bài 2.23 trang 61 sách bài tập hình học 12. Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho. Mặt phẳng qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C).
Xem thêm
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi