Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Cho hàm số \(y = f\left( x \right) = \dfrac{2}{3}x + 5\) với \(x \in R\)
Chứng minh rằng hàm số đồng biến trên \(R\).
Phương pháp giải - Xem chi tiết
- Tìm tập xác định (TXĐ) D của hàm số
- Giả sử \({x_1} < {x_2}\) với (\({x_1};{x_2} \in D\)). Xét hiệu \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right).\)
+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) < 0\) hay \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\) thì hàm số đồng biến trên D.
+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\) hay \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\) thì hàm số nghịch biến trên D.
Lời giải chi tiết
Xét hàm số \(y = f\left( x \right) = \dfrac{2}{3}x + 5\)
Với hai số \(x_1\) và \(x_2\) thuộc \(\mathbb R\), ta có:
\({{\rm{y}}_1} = f\left( {{x_1}} \right) = \dfrac{2}{3}{x_1} + 5\)
\({{\rm{y}}_2} = f\left( {{x_2}} \right) = \dfrac{2}{3}{x_2} + 5\)
Nếu \({x_1} < {x_2}\) thì \({x_2} - {x_1} > 0\)
Khi đó:
\(f\left( {{x_2}} \right) - f\left( {{x_1}} \right)\)
\(= \left( {\dfrac{2}{3}{x_2} + 5} \right) - \left( {\dfrac{2}{3}{x_1} + 5} \right)\)\(= \dfrac{2}{3}{x_2} + 5 - {\dfrac{2}{3}{x_1} - 5} \)\(= \dfrac{2}{3}{x_2} - {\dfrac{2}{3}{x_1}} \)\( = \dfrac{2}{3}\left( {{x_2} - {x_1}} \right) > 0\)
Suy ra: \(f\left( {{x_2}} \right) > f\left( {{x_1}} \right)\)
Vậy hàm số đồng biến trên \(R\).
Văn biểu cảm
Bài 16: Quyền tham gia quản lý nhà nước, quản lý xã hội của công dân
Bài 9: Làm việc có năng suất, chất lượng, hiệu quả
Đề thi vào 10 môn Văn Đăk Nông
CHƯƠNG 3: QUANG HỌC