Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Cho hàm số \(y = f\left( x \right) = \dfrac{2}{3}x + 5\) với \(x \in R\)
Chứng minh rằng hàm số đồng biến trên \(R\).
Phương pháp giải - Xem chi tiết
- Tìm tập xác định (TXĐ) D của hàm số
- Giả sử \({x_1} < {x_2}\) với (\({x_1};{x_2} \in D\)). Xét hiệu \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right).\)
+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) < 0\) hay \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\) thì hàm số đồng biến trên D.
+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\) hay \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\) thì hàm số nghịch biến trên D.
Lời giải chi tiết
Xét hàm số \(y = f\left( x \right) = \dfrac{2}{3}x + 5\)
Với hai số \(x_1\) và \(x_2\) thuộc \(\mathbb R\), ta có:
\({{\rm{y}}_1} = f\left( {{x_1}} \right) = \dfrac{2}{3}{x_1} + 5\)
\({{\rm{y}}_2} = f\left( {{x_2}} \right) = \dfrac{2}{3}{x_2} + 5\)
Nếu \({x_1} < {x_2}\) thì \({x_2} - {x_1} > 0\)
Khi đó:
\(f\left( {{x_2}} \right) - f\left( {{x_1}} \right)\)
\(= \left( {\dfrac{2}{3}{x_2} + 5} \right) - \left( {\dfrac{2}{3}{x_1} + 5} \right)\)\(= \dfrac{2}{3}{x_2} + 5 - {\dfrac{2}{3}{x_1} - 5} \)\(= \dfrac{2}{3}{x_2} - {\dfrac{2}{3}{x_1}} \)\( = \dfrac{2}{3}\left( {{x_2} - {x_1}} \right) > 0\)
Suy ra: \(f\left( {{x_2}} \right) > f\left( {{x_1}} \right)\)
Vậy hàm số đồng biến trên \(R\).
B- LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY
Unit 8: Celebrations - Lễ kỉ niệm
QUYỂN 1. CẮT MAY
Đề thi vào 10 môn Toán Khánh Hòa
Bài 12. Sự phát triển và phân bố công nghiệp