Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Chứng minh các đẳng thức sau
a) \(\left( {\dfrac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \dfrac{{\sqrt {216} }}{{\sqrt 6 }}} \right).\dfrac{1}{{\sqrt 6 }} = - 1,5\)
b) \(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7 - \sqrt 5 }} = - 2\)
c) \(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a - \sqrt b }} = a - b\) với a, b dương và \(a \ne b\)
d) \(\left( {1 + \dfrac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \dfrac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = 1 - a\) với \(a \ge 0\) và \(a \ne 1\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\sqrt {AB} = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\) và các hằng đẳng thức để biến đổi phân tích các tử (mẫu) thành nhân tử ( nếu có thể) để rút gọn.
Lời giải chi tiết
a) Biến đổi vế trái ta có :
\(\left( {\dfrac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \dfrac{{\sqrt {216} }}{{\sqrt 6 }}} \right).\dfrac{1}{{\sqrt 6 }} \)\(=\left( {\dfrac{{2\sqrt 3 - \sqrt 2 \sqrt 3 }}{{2\sqrt 2 - 2}} - \dfrac{{\sqrt {{2^3}{{.3}^3}} }}{3}} \right) \cdot \dfrac{1}{{\sqrt 6 }}\)
\( = \left( {\dfrac{{\sqrt 3 \left( {2 - \sqrt 2 } \right)}}{{2\left( {\sqrt 2 - 1} \right)}} - \dfrac{{2.3.\sqrt {2.3} }}{3}} \right) \cdot \dfrac{1}{{\sqrt 6 }}\)
\( = \left( {\dfrac{{\sqrt 3 \sqrt 2 \left( {\sqrt 2 - 1} \right)}}{{2\left( {\sqrt 2 - 1} \right)}} - \dfrac{{2\sqrt 6 }}{1}} \right)\dfrac{1}{{\sqrt 6 }}\)
\( = \left( {\dfrac{{\sqrt 6 }}{2} - 2\sqrt 6 } \right) \cdot \dfrac{1}{{\sqrt 6 }}\)
\( = \dfrac{1}{2} - 2 = - 1,5.\)
Vế trái bằng vế phải. Vậy đẳng thức đúng.
b) Biến đổi vế trái, ta có :
\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7 - \sqrt 5 }}\)
\( = \left( {\dfrac{{\sqrt 2 \cdot \sqrt 7 - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt 3 \cdot \sqrt 5 - \sqrt 5 }}{{1 - \sqrt 3 }}} \right) . \left( {\sqrt 7 - \sqrt 5 } \right)\)
\( = \left( {\dfrac{{\sqrt 7 \left( {\sqrt 2 - 1} \right)}}{{1 - \sqrt 2 }} + \dfrac{{\sqrt 5 \left( {\sqrt 3 - 1} \right)}}{{1 - \sqrt 3 }}} \right) \cdot \left( {\sqrt 7 - \sqrt 5 } \right)\)
\( = \left( { - \sqrt 7 - \sqrt 5 } \right)\left( {\sqrt 7 - \sqrt 5 } \right)\)
\( = - \left( {\sqrt 7 + \sqrt 5 } \right)\left( {\sqrt 7 - \sqrt 5 } \right)\)
\( = - \left[ {{{\left( {\sqrt 7 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}} \right] = - 2\)
Vế trái bằng vế phải. Vậy đẳng thức đúng.
c) Biến đổi vế trái ta có :
\(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a - \sqrt b }} = \) \(\dfrac{{\sqrt a \sqrt a \sqrt b + \sqrt b \sqrt b \sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a - \sqrt b }}\)
\( = \left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a - \sqrt b } \right)\)
\( = {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b } \right)^2} = a - b.\)
Vế trái bằng vế phải. Vậy đẳng thức đúng.
d) Biến đổi vế trái, ta có :
\(\left( {1 + \dfrac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \dfrac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) \) \(=\left( {1 + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a + 1}}} \right)\left( {1 - \dfrac{{\sqrt a \left( {\sqrt a - 1} \right)}}{{\sqrt a - 1}}} \right) \)\(=\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right) = 1 - a\)
Vế trái bằng vế phải. Vậy đẳng thức đúng.
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 9
Đề thi vào 10 môn Toán Đắk Lắk
Bài 40. Thực hành: Đánh giá tiềm năng kinh tế của các đảo ven bờ và tìm hiểu về ngành công nghiệp dầu khí
Tải 20 đề kiểm tra 1 tiết học kì 1 Văn 9
Đề thi vào 10 môn Văn Tuyên Quang