Đề bài
Cho Hình 37 có AB = AC = BC = BD = CE,
a) Chứng minh tam giác AED là tam giác cân.
b) Tính số đo các góc của tam giác ADE.
c) Chứng minh DC = BE
Phương pháp giải - Xem chi tiết
- Chứng minh: AD = AE suy ra tam giác AED cân tại A.
- Sử dụng tam giác cân và tổng ba góc bằng
- Chứng minh:
Lời giải chi tiết
a) Xét ∆ABD và ∆ACE có:
AB = AC (giả thiết),
BD = CE (giả thiết).
Do đó ∆ABD = ∆ACE (hai cạnh góc vuông)
Suy ra AD = AE (hai cạnh tương ứng).
Nên tam giác AED cân tại A.
Vậy tam giác AED cân tại A.
b) • Vì AB = AC = BC (giả thiết) nên tam giác ABC đều.
Suy ra
Vì AC = CE ,
Suy ra
Vì AB = BD ,
Suy ra
Ta có
• Vì tam giác AED cân tại A nên
Xét ∆ADE có:
Mà
Suy ra
Vậy ∆ADE có
c) Ta có
Xét ∆CBD và ∆BCE có:
BC là cạnh chung,
BD = CE (giả thiết),
Do đó ∆BDC = ∆CEB (c.g.c).
Suy ra DC = EB (hai cạnh tương ứng)
Vậy DC = BE.
Chủ đề 7: Em với thiên nhiên và môi trường
Đề thi học kì 2
Chương VII. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Toán 7 tập 1 - Cánh diều
Đề thi giữa kì 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7